
ADDFTINFO(1) ADDFTINFO(1)

ADDFTINFO

NAME
addftinfo − add information to troff font files for use with groff

SYNOPSIS
addftinfo [−v] [−param value. . .] res unitwidth font

DESCRIPTION
addftinfo reads a troff font file and adds some additional font-metric information that is used by the
groff system. The font file with the information added is written on the standard output. The informa-
tion added is guessed using some parametric information about the font and assumptions about the tra-
ditional troff names for characters. The main information added is the heights and depths of characters.
The res and unitwidth arguments should be the same as the corresponding parameters in the DESC file;
font is the name of the file describing the font; if font ends with I the font will be assumed to be italic.

OPTIONS
−v prints the version number.

All other options changes one of the parameters that is used to derive the heights and depths. Like the
existing quantities in the font file, each value is in inches/res for a font whose point size is unitwidth.
param must be one of:

x-height
The height of lowercase letters without ascenders such as x.

fig-height
The height of figures (digits).

asc-height
The height of characters with ascenders, such as b, d or l.

body-height
The height of characters such as parentheses.

cap-height
The height of uppercase letters such as A.

comma-depth
The depth of a comma.

desc-depth
The depth of characters with descenders, such as p,q, or y.

body-depth
The depth of characters such as parentheses.

addftinfo makes no attempt to use the specified parameters to guess the unspecified parameters. If a
parameter is not specified the default will be used. The defaults are chosen to have the reasonable val-
ues for a Times font.

SEE ALSO
groff_font(5), groff(1), groff_char(7)

Groff Version 1.20 5 January 2009 1

AFMTODIT(1) AFMTODIT(1)

AFMTODIT

NAME
afmtodit − create font files for use with groff −Tps

SYNOPSIS
afmtodit [−ckmnsvx] [−a n] [−d desc_file] [−e enc_file] [−f internal_name] [−i n] afm_file

map_file font

The whitespace between a command line option and its argument is optional.

DESCRIPTION
afmtodit creates a font file for use with groff and grops. afmtodit is written in perl; you must have
perl version 5.004 or newer installed in order to run afmtodit.

afm_file is the AFM (Adobe Font Metric) file for the font.

map_file is a file that says which groff character names map onto each PostScript character name; this
file should contain a sequence of lines of the form

ps_char groff_char

where ps_char is the PostScript name of the character and groff_char is the groff name of the character
(as used in the groff font file). The same ps_char can occur multiple times in the file; each groff_char

must occur at most once. Lines starting with # and blank lines are ignored. If the file isn’t found in the
current directory, it is searched in the ‘devps/generate’ subdirectory of the default font directory.

If a PostScript character is not mentioned in map_file, and a generic groff glyph name can’t be deduced
using the Adobe Glyph List (AGL, built into afmtodit), then afmtodit puts the PostScript character
into the groff font file as an unnamed character which can only be accessed by the \N escape sequence
in troff. In particular, this is true for glyph variants like ‘foo.bar’; all glyph names containing one or
more periods are mapped to unnamed entities. If option −e is not specified, the encoding defined in the
AFM file (i.e., entries with non-negative character codes) is used. Please refer to section ‘Using Sym-
bols’ in the groff info file which describes how groff glyph names are constructed.

Characters not encoded in the AFM file (i.e., entries which have −1 as the character code) are still
available in groff; they get glyph index values greater than 255 (or greater than the biggest character
code used in the AFM file in the unlikely case that it is greater than 255) in the groff font file. Glyph
indices of unencoded characters don’t hav e a specific order; it is best to access them with glyph names
only.

The groff font file will be output to a file called font.

If there is a downloadable font file for the font, it may be listed in the file c:/pro-
gra˜1/groff/share/groff/1.20/font/devps/download; see grops(1).

If the −i option is used, afmtodit will automatically generate an italic correction, a left italic correction
and a subscript correction for each character (the significance of these parameters is explained in
groff_font(5)); these parameters may be specified for individual characters by adding to the afm_file

lines of the form:

italicCorrection ps_char n

leftItalicCorrection ps_char n

subscriptCorrection ps_char n

where ps_char is the PostScript name of the character, and n is the desired value of the corresponding
parameter in thousandths of an em. These parameters are normally needed only for italic (or oblique)
fonts.

OPTIONS
−an Use n as the slant parameter in the font file; this is used by groff in the positioning of accents.

By default afmtodit uses the negative of the ItalicAngle specified in the afm file; with true
italic fonts it is sometimes desirable to use a slant that is less than this. If you find that charac-
ters from an italic font have accents placed too far to the right over them, then use the −a
option to give the font a smaller slant.

−c Include comments in the font file in order to identify the PS font.

Groff Version 1.20 5 January 2009 1

AFMTODIT(1) AFMTODIT(1)

−ddesc_file

The device description file is desc_file rather than the default DESC. If not found in the cur-
rent directory, the ‘devps’ subdirectory of the default font directory is searched (this is true for
both the default device description file and a file given with option −d).

−eenc_file

The PostScript font should be reencoded to use the encoding described in enc_file. The for-
mat of enc_file is described in grops(1). If not found in the current directory, the ‘devps’ sub-
directory of the default font directory is searched.

−fname

The internal name of the groff font is set to name.

−in Generate an italic correction for each character so that the character’s width plus the charac-
ter’s italic correction is equal to n thousandths of an em plus the amount by which the right
edge of the character’s bounding box is to the right of the character’s origin. If this would
result in a negative italic correction, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font
and four fifths of the x-height of the font. If this would result in a subscript correction greater
than the italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each character equal to n thousandths of an em plus
the amount by which the left edge of the character’s bounding box is to the left of the charac-
ter’s origin. The left italic correction may be negative unless option −m is given.

This option is normally needed only with italic (or oblique) fonts. The font files distributed
with groff were created using an option of −i50 for italic fonts.

−k Omit any kerning data from the groff font. This should be used only for mono-spaced fonts.

−m Prevent negative left italic correction values. Roman font files distributed with groff were cre-
ated with −i0 −m to improve spacing with eqn(1).

−n Don’t output a ligatures command for this font. Use this with constant-width fonts.

−s The font is special. The effect of this option is to add the special command to the font file.

−v Print version.

−x Don’t use the built-in Adobe Glyph List.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devps/DESC

Device description file.

c:/progra˜1/groff/share/groff/1.20/font/devps/F
Font description file for font F .

c:/progra˜1/groff/share/groff/1.20/font/devps/download
List of downloadable fonts.

c:/progra˜1/groff/share/groff/1.20/font/devps/text.enc
Encoding used for text fonts.

c:/progra˜1/groff/share/groff/1.20/font/devps/generate/textmap
Standard mapping.

SEE ALSO
groff(1), grops(1), groff_font(5), perl(1)

The groff info file, section ‘Using Symbols’.

Groff Version 1.20 5 January 2009 2

CHEM(1) CHEM(1)

CHEM

NAME
chem − groff preprocessor for producing chemical structure diagrams

SYNOPSIS
[option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

OPTION USAGE
There are no other options than −h, −−help, −v, and −−version; these options provoke the printing of a
version or usage information, respectively, and all filespec arguments are ignored. A filespec argument
is either a file name of an existing file or a minus character −, meaning standard input. If no argument
is specified then standard input is taken automatically.

DESCRIPTION
chem produces chemical structure diagrams. Today’s version is best suited for organic chemistry
(bonds, rings). The chem program is a groff preprocessor like eqn, pic, tbl, etc. It generates pic out-
put such that all chem parts are translated into diagrams of the pic language.

The program chem originates from the Perl source file chem.pl. It tells pic to include a copy of the
macro file chem.pic. Moreover the groff source file pic.tmac is loaded.

In a style reminiscent of eqn and pic, the chem diagrams are written in a special language.

A set of chem lines looks like this

.cstart
chem data

.cend

Lines containing the keywords .cstart and .cend start and end the input for chem, respectively. In pic

context, i.e., after the call of .PS, chem input can optionally be started by the line begin chem and end-
ed by the line with the single word end instead.

Anything outside these initialization lines is copied through without modification; all data between the
initialization lines is converted into pic commands to draw the diagram.

As an example,

.cstart
CH3
bond
CH3
.cend

prints two CH3 groups with a bond between them.

To actually view this, you must run chem followed by groffer:

chem [file. . .] | groffer

If you want to create just groff output, you must run chem followed by groff with the option −p for the
activation of pic:

chem [file. . .] | groff -p . . .

THE LANGUAGE
The chem input language is rather small. It provides rings of several styles and a way to glue them to-
gether as desired, bonds of several styles, moieties (e.g., C, NH3, . . .), and strings.

Setting Variables
There are some variables that can be set by commands. Such commands have two possible forms, ei-
ther

variable value

or

variable = value

This sets the given variable to the argument value. If more arguments are given only the last argument
is taken, all other arguments are ignored.

Groff Version 1.20 5 January 2009 1

CHEM(1) CHEM(1)

There are only a few variables to be set by these commands:

textht arg

Set the height of the text to arg; default is 0.16.

cwid arg

Set the character width to arg; default is 0.12.

db arg Set the bond length to arg; default is 0.2.

size arg

Scale the diagram to make it look plausible at point size arg; default is 10 point.

Bonds
This

[direction] [length n] [from Name|picstuff]

draws a single bond in direction from nearest corner of Name. bond can also be double bond, front
bond, back bond, etc. (We will get back to Name soon.)

direction is the angle in degrees (0 up, positive clockwise) or a direction word like up, down, sw
(= southwest), etc. If no direction is specified, the bond goes in the current direction (usually that of
the last bond).

Normally the bond begins at the last object placed; this can be changed by naming a from place. For
instance, to make a simple alkyl chain:

CH3
bond (this one goes right from the CH3)
C (at the right end of the bond)
double bond up (from the C)
O (at the end of the double bond)
bond right from C
CH3

A length in inches may be specified to override the default length. Other pic commands can be tacked
on to the end of a bond command, to created dotted or dashed bonds or to specify a to place.

Rings
There are lots of rings, but only 5 and 6-sided rings get much support. ring by itself is a 6-sided ring;
benzene is the benzene ring with a circle inside. aromatic puts a circle into any kind of ring.

[pointing (up|right|left|down)] [aromatic] [put Mol at n] [double i, j k,l . . .] [picstuff]

The vertices of a ring are numbered 1, 2, . . . from the vertex that points in the natural compass direc-
tion. So for a hexagonal ring with the point at the top, the top vertex is 1, while if the ring has a point
at the east side, that is vertex 1. This is expressed as

R1: ring pointing up
R2: ring pointing right

The ring vertices are named .V1, . . ., .Vn, with .V1 in the pointing direction. So the corners of R1 are
R1.V1 (the top), R1.V2, R1.V3, R1.V4 (the bottom), etc., whereas for R2, R2.V1 is the rightmost ver-
tex and R2.V4 the leftmost. These vertex names are used for connecting bonds or other rings. For ex-
ample,

R1: benzene pointing right
R2: benzene pointing right with .V6 at R1.V2

creates two benzene rings connected along a side.

Interior double bonds are specified as double n1,n2 n3,n4 . . .; each number pair adds an interior bond.
So the alternate form of a benzene ring is

ring double 1,2 3,4 5,6

Heterocycles (rings with something other than carbon at a vertex) are written as put X at V, as in

R: ring put N at 1 put O at 2

In this heterocycle, R.N and R.O become synonyms for R.V1 and R.V2.

There are two 5-sided rings. ring5 is pentagonal with a side that matches the 6-sided ring; it has four

Groff Version 1.20 5 January 2009 2

CHEM(1) CHEM(1)

natural directions. A flatring is a 5-sided ring created by chopping one corner of a 6-sided ring so that
it exactly matches the 6-sided rings.

The description of a ring has to fit on a single line.

Moieties and Strings
A moiety is a string of characters beginning with a capital letter, such as N(C2H5)2. Numbers are con-
verted to subscripts (unless they appear to be fractional values, as in N2.5H). The name of a moiety is
determined from the moiety after special characters have been stripped out: e.g., N(C2H5)2) has the
name NC2H52.

Moieties can be specified in two kinds. Normally a moiety is placed right after the last thing men-
tioned, separated by a semicolon surrounded by spaces, e.g.,

B1: bond ; OH

Here the moiety is OH; it is set after a bond.

As the second kind a moiety can be positioned as the first word in a pic-like command, e.g.,

CH3 at C + (0.5,0.5)

Here the moiety is CH3. It is placed at a position relative to C, a moiety used earlier in the chemical
structure.

So moiety names can be specified as chem positions everywhere in the chem code. Beneath their print-
ing moieties are names for places.

The moiety BP is special. It is not printed but just serves as a mark to be referred to in later chem com-
mands. For example,

bond ; BP

sets a mark at the end of the bond. This can be used then for specifying a place. The name BP is de-
rived from branch point (i.e., line crossing).

A string within double quotes " is interpreted as a part of a chem command. It represents a string that
should be printed (without the quotes). Te xt within quotes ". . ." is treated more or less like a moiety
except that no changes are made to the quoted part.

Names
In the alkyl chain above, notice that the carbon atom C was used both to draw something and as the
name for a place. A moiety always defines a name for a place; you can use your own names for places
instead, and indeed, for rings you will have to. A name is just

Name: . . .

Name is often the name of a moiety like CH3, but it need not to be. Any name that begins with a capi-
tal letter and which contains only letters and numbers is valid:

First: bond bond 30 from First

Miscellaneous
The specific construction

bond . . . ; moiety

is equivalent to

bond
moiety

Otherwise, each item has to be on a separate line (and only one line). Note that there must be white-
space after the semicolon which separates the commands.

A period character . or a single quote ’ in the first column of a line signals a troff command, which is
copied through as-is.

A line whose first non-blank character is a hash character (#) is treated as a comment and thus ignored.
However, hash characters within a word are kept.

A line whose first word is pic is copied through as-is after the word pic has been removed.

The command

Groff Version 1.20 5 January 2009 3

CHEM(1) CHEM(1)

size n

scales the diagram to make it look plausible at point size n (default is 10 point).

Anything else is assumed to be pic code, which is copied through with a label.

Since chem is a pic preprocessor, it is possible to include pic statements in the middle of a diagram to
draw things not provided for by chem itself. Such pic statements should be included in chem code by
adding pic as the first word of this line for clarity.

The following pic commands are accepted as chem commands, so no pic command word is needed:

define Start the definition of pic macro within chem.

[Start a block composite.

] End a block composite.

{ Start a macro definition block.

} End a macro definition block.

The macro names from define statements are stored and their call is accepted as a chem command as
well.

WISH LIST
This TODO list was collected by Brian Kernighan.

Error checking is minimal; errors are usually detected and reported in an oblique fashion by pic.

There is no library or file inclusion mechanism, and there is no shorthand for repetitive structures.

The extension mechanism is to create pic macros, but these are tricky to get right and don’t hav e all the
properties of built-in objects.

There is no in-line chemistry yet (e.g., analogous to the $. . .$ construct of eqn).

There is no way to control entry point for bonds on groups. Normally a bond connects to the carbon
atom if entering from the top or bottom and otherwise to the nearest corner.

Bonds from substituted atoms on heterocycles do not join at the proper place without adding a bit of
pic.

There is no decent primitive for brackets.

Te xt (quoted strings) doesn’t work very well.

A squiggle bond is needed.

FILES
c:/progra˜1/groff/share/groff/1.20/pic/chem.pic

A collection of pic macros needed by chem.

c:/progra˜1/groff/share/groff/1.20/tmac/pic.tmac

A macro file which redefines .PS and .PE to center pic diagrams.

c:/progra˜1/groff/share/doc/groff/1.20/examples/chem/*.chem

Example files for chem.

c:/progra˜1/groff/share/doc/groff/1.20/examples/chem/122/*.chem

Example files from the classical chem book 122.ps.

BUGS
Report bugs to the bug-groff mailing list Include a complete, self-contained example that will allow the
bug to be reproduced, and say which version of groff and chem you are using. You can get both version
numbers by calling chem --version.

You can also use the groff mailing list but you must first subscribe to this list. You can do that by visit-
ing the groff mailing list web page

See groff(1) for information on availability.

SEE ALSO
groff(1), pic(1), groffer(1).

You can still get the original chem awk source Its README file was used for this manual page.

Groff Version 1.20 5 January 2009 4

CHEM(1) CHEM(1)

The other classical document on chem is 122.ps

AUTHOR
This file was written by Bernd Warken. It is based on the documentation of Brian Kernighan original
awk version of chem.

COPYING
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

This file is part of chem, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the man

page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 5 January 2009 5

DEROFF(1) User commands DEROFF(1)

DEROFF

NAME
deroff − remove roff, tbl, eqn, refer and pic constructs from documents

SYNOPSIS
deroff [−w] [−s] [−ml] [−ms] [−mm] [−p] [file...]
deroff [−−word-list] [−−skip-headers] [−−skip-lists] [−−pretty-print] [file...]
deroff −h|−−help
deroff −−version

DESCRIPTION
deroff reads roff documents and removes all nroff (1), troff (1), refer(1), tbl(1), eqn(1) and pic(1) con-
structs. The resulting text will be sent to standard output. .so and .nx requests are processed, but
repeated requests to process an already read file will be ignored.

OPTIONS
−w, −−word-list

Output a word list, one word per line.

−s, −−skip-headers
Do not output headers. This is useful if you want to run text analysis tools on the output.

−ml, −−suppress-lists
Suppress lists. This option is useful with −s, if there are many incomplete sentences in lists.

−ms, −mm
These options are accepted for compatibility, but they are being ignored.

−i Ignore .so and .nx requests.

−p, −−pretty−print
Format the output more pretty by omitting and adding newline characters at certain places.

−h, −−help
Print a short usage message.

−−version
Print the version.

EXAMPLE
The following example does a simple spell check of a document:

deroff -w document.mm | sort -u |
comm -23 - /usr/share/words/en

RESTRICTIONS
deroff is not a complete roff parser, so it can be confused by complicated constructs. Often too much
output is done in these cases.

AUTHOR
This program is copyright 1993–2004 Michael Haardt <michael@moria.de>.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Gen-
eral Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

SEE ALSO
soelim(1), troff(1), nroff(1), refer(1), tbl(1), pic(1), eqn(1)

March 18, 2004 1

EQN(1) EQN(1)

EQN

NAME
eqn − format equations for troff or MathML

SYNOPSIS
[−rvCNR] [−d xy] [−T name] [−M dir] [−f F] [−s n] [−p n] [−m n] [files . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
This manual page describes the GNU version of eqn, which is part of the groff document formatting
system. eqn compiles descriptions of equations embedded within troff input files into commands that
are understood by troff. Normally, it should be invoked using the −e option of groff. The syntax is
quite compatible with Unix eqn. The output of GNU eqn cannot be processed with Unix troff; it must
be processed with GNU troff. If no files are given on the command line, the standard input is read. A
filename of − causes the standard input to be read.

eqn searches for the file eqnrc in the directories given with the −M option first, then in c:/pro-
gra˜1/groff/lib/groff/site-tmac, c:/progra˜1/groff/share/groff/site-tmac, and finally in the standard
macro directory c:/progra˜1/groff/share/groff/1.20/tmac. If it exists, eqn processes it before the other
input files. The −R option prevents this.

GNU eqn does not provide the functionality of neqn: it does not support low-resolution, typewriter-like
devices (although it may work adequately for very simple input).

OPTIONS
−dxy Specify delimiters x and y for the left and right end, respectively, of in-line equations. Any

delim statements in the source file overrides this.

−C Recognize .EQ and .EN ev en when followed by a character other than space or newline.

−N Don’t allow newlines within delimiters. This option allows eqn to recover better from missing
closing delimiters.

−v Print the version number.

−r Only one size reduction.

−mn The minimum point-size is n. eqn does not reduce the size of subscripts or superscripts to a
smaller size than n.

−Tname

The output is for device name. Normally, the only effect of this is to define a macro name

with a value of 1; eqnrc uses this to provide definitions appropriate for the output device.
However, if the specified device is “MathML”, the output is MathML markup rather than troff
commands, and eqnrc is not loaded at all. The default output device is ps.

−Mdir Search dir for eqnrc before the default directories.

−R Don’t load eqnrc.

−fF This is equivalent to a gfont F command.

−sn This is equivalent to a gsize n command. This option is deprecated. eqn normally sets equa-
tions at whatever the current point size is when the equation is encountered.

−pn This says that subscripts and superscripts should be n points smaller than the surrounding text.
This option is deprecated. Normally eqn sets subscripts and superscripts at 70% of the size of
the surrounding text.

USAGE
Only the differences between GNU eqn and Unix eqn are described here.

GNU eqn emits Presentation MathML output when invoked with the -T MathML option.

GNU eqn sets the input token "..." as three periods or low dots, rather than the three centered dots of
classic eqn. To get three centered dots, write cdots or cdot cdot cdot.

Most of the new features of the GNU eqn input language are based on TEX. There are some references
to the differences between TEX and GNU eqn below; these may safely be ignored if you do not know
TEX.

Groff Version 1.20 5 January 2009 1

EQN(1) EQN(1)

Automatic spacing
eqn gives each component of an equation a type, and adjusts the spacing between components using
that type. Possible types are:

ordinary an ordinary character such as ‘1’ or ‘x’;

operator a large operator such as ‘Σ’;

binary a binary operator such as ‘+’;

relation a relation such as ‘=’;

opening a opening bracket such as ‘(’;

closing a closing bracket such as ‘)’;

punctuation a punctuation character such as ‘,’;

inner a subformula contained within brackets;

suppress spacing that suppresses automatic spacing adjustment.

Components of an equation get a type in one of two ways.

type t e This yields an equation component that contains e but that has type t, where t is one of the
types mentioned above. For example, times is defined as

type "binary" \(mu

The name of the type doesn’t hav e to be quoted, but quoting protects from macro expansion.

chartype t text

Unquoted groups of characters are split up into individual characters, and the type of each
character is looked up; this changes the type that is stored for each character; it says that the
characters in text from now on hav e type t. For example,

chartype "punctuation" .,;:

would make the characters ‘.,;:’ have type punctuation whenever they subsequently appeared
in an equation. The type t can also be letter or digit; in these cases chartype changes the font
type of the characters. See the Fonts subsection.

New primitives
big e Enlarges the expression it modifies; intended to have semantics like CSS ‘large’. In troff out-

put, the point size is increased by 5; in MathML output, the expression uses

<mstyle mathsize=’big’>

e1 smallover e2

This is similar to over; smallover reduces the size of e1 and e2; it also puts less vertical space
between e1 or e2 and the fraction bar. The over primitive corresponds to the TEX \over primi-
tive in display styles; smallover corresponds to \over in non-display styles.

vcenter e

This vertically centers e about the math axis. The math axis is the vertical position about
which characters such as ‘+’ and ‘−’ are centered; also it is the vertical position used for the
bar of fractions. For example, sum is defined as

{ type "operator" vcenter size +5 \(*S }

(Note that vcenter is silently ignored when generating MathML.)

e1 accent e2

This sets e2 as an accent over e1. e2 is assumed to be at the correct height for a lowercase let-
ter; e2 is moved down according to whether e1 is taller or shorter than a lowercase letter. For
example, hat is defined as

accent { "ˆ" }

dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

e1 uaccent e2

This sets e2 as an accent under e1. e2 is assumed to be at the correct height for a character
without a descender; e2 is moved down if e1 has a descender. utilde is pre-defined using

Groff Version 1.20 5 January 2009 2

EQN(1) EQN(1)

uaccent as a tilde accent below the baseline.

split "text"
This has the same effect as simply

text

but text is not subject to macro expansion because it is quoted; text is split up and the spacing
between individual characters is adjusted.

nosplit text

This has the same effect as

"text"

but because text is not quoted it is subject to macro expansion; text is not split up and the spac-
ing between individual characters is not adjusted.

e opprime
This is a variant of prime that acts as an operator on e. It produces a different result from
prime in a case such as A opprime sub 1: with opprime the 1 is tucked under the prime as a
subscript to the A (as is conventional in mathematical typesetting), whereas with prime the 1
is a subscript to the prime character. The precedence of opprime is the same as that of bar
and under, which is higher than that of everything except accent and uaccent. In unquoted
text a ’ that is not the first character is treated like opprime.

special text e

This constructs a new object from e using a troff(1) macro named text. When the macro is
called, the string 0s contains the output for e, and the number registers 0w, 0h, 0d, 0skern,
and 0skew contain the width, height, depth, subscript kern, and skew of e. (The subscript kern

of an object says how much a subscript on that object should be tucked in; the skew of an
object says how far to the right of the center of the object an accent over the object should be
placed.) The macro must modify 0s so that it outputs the desired result with its origin at the
current point, and increase the current horizontal position by the width of the object. The
number registers must also be modified so that they correspond to the result.

For example, suppose you wanted a construct that ‘cancels’ an expression by drawing a diago-
nal line through it.

.EQ
define cancel ’special Ca’
.EN
.de Ca
. ds 0s \
\Z’*(0s’\
\v’\\n(0du’\
\D’l \\n(0wu -\\n(0hu-\\n(0du’\
\v’\\n(0hu’
..

Then you could cancel an expression e with cancel { e }

Here’s a more complicated construct that draws a box round an expression:

.EQ
define box ’special Bx’
.EN
.de Bx
. ds 0s \
\Z’\h’1n’*(0s’\
\Z’\
\v’\\n(0du+1n’\
\D’l \\n(0wu+2n 0’\
\D’l 0 -\\n(0hu-\\n(0du-2n’\
\D’l -\\n(0wu-2n 0’\
\D’l 0 \\n(0hu+\\n(0du+2n’\

Groff Version 1.20 5 January 2009 3

EQN(1) EQN(1)

’\
\h’\\n(0wu+2n’
. nr 0w +2n
. nr 0d +1n
. nr 0h +1n
..

space n

A positive value of the integer n (in hundredths of an em) sets the vertical spacing before the
equation, a negative value sets the spacing after the equation, replacing the default values.
This primitive provides an interface to groff’s \x escape (but with opposite sign).

This keyword has no effect if the equation is part of a pic picture.

Extended primitives
col n { . . . }

ccol n { . . . } lcol n { . . . } rcol n { . . . } pile n { . . . } cpile n { . . . } lpile n { . . . } rpile n { . . . }
The integer value n (in hundredths of an em) increases the vertical spacing between rows,
using groff’s \x escape (the value has no effect in MathML mode). Negative values are possi-
ble but have no effect. If there is more than a single value given in a matrix, the biggest one is
used.

Customization
When eqn is generating troff markup, the appearance of equations is controlled by a large number of
parameters. They hav e no effect when generating MathML mode, which pushes typesetting and fine
motions downstream to a MathML rendering engine. These parameters can be set using the set com-
mand.

set p n This sets parameter p to value n; n is an integer. For example,

set x_height 45

says that eqn should assume an x height of 0.45 ems.

Possible parameters are as follows. Values are in units of hundredths of an em unless other-
wise stated. These descriptions are intended to be expository rather than definitive.

minimum_size eqn doesn’t set anything at a smaller point-size than this. The value
is in points.

fat_offset The fat primitive emboldens an equation by overprinting two
copies of the equation horizontally offset by this amount. This
parameter is not used in MathML mode; instead, fat text uses

<mstyle mathvariant=’double-struck’>

over_hang A fraction bar is longer by twice this amount than the maximum of
the widths of the numerator and denominator; in other words, it
overhangs the numerator and denominator by at least this amount.

accent_width When bar or under is applied to a single character, the line is this
long. Normally, bar or under produces a line whose length is the
width of the object to which it applies; in the case of a single char-
acter, this tends to produce a line that looks too long.

delimiter_factor Extensible delimiters produced with the left and right primitives
have a combined height and depth of at least this many thousandths
of twice the maximum amount by which the sub-equation that the
delimiters enclose extends away from the axis.

delimiter_shortfall Extensible delimiters produced with the left and right primitives
have a combined height and depth not less than the difference of
twice the maximum amount by which the sub-equation that the
delimiters enclose extends away from the axis and this amount.

null_delimiter_space This much horizontal space is inserted on each side of a fraction.

script_space The width of subscripts and superscripts is increased by this
amount.

Groff Version 1.20 5 January 2009 4

EQN(1) EQN(1)

thin_space This amount of space is automatically inserted after punctuation
characters.

medium_space This amount of space is automatically inserted on either side of
binary operators.

thick_space This amount of space is automatically inserted on either side of
relations.

x_height The height of lowercase letters without ascenders such as ‘x’.

axis_height The height above the baseline of the center of characters such as ‘+’
and ‘−’. It is important that this value is correct for the font you are
using.

default_rule_thickness This should set to the thickness of the \(ru character, or the thick-
ness of horizontal lines produced with the \D escape sequence.

num1 The over command shifts up the numerator by at least this amount.

num2 The smallover command shifts up the numerator by at least this
amount.

denom1 The over command shifts down the denominator by at least this
amount.

denom2 The smallover command shifts down the denominator by at least
this amount.

sup1 Normally superscripts are shifted up by at least this amount.

sup2 Superscripts within superscripts or upper limits or numerators of
smallover fractions are shifted up by at least this amount. This is
usually less than sup1.

sup3 Superscripts within denominators or square roots or subscripts or
lower limits are shifted up by at least this amount. This is usually
less than sup2.

sub1 Subscripts are normally shifted down by at least this amount.

sub2 When there is both a subscript and a superscript, the subscript is
shifted down by at least this amount.

sup_drop The baseline of a superscript is no more than this much amount
below the top of the object on which the superscript is set.

sub_drop The baseline of a subscript is at least this much below the bottom of
the object on which the subscript is set.

big_op_spacing1 The baseline of an upper limit is at least this much above the top of
the object on which the limit is set.

big_op_spacing2 The baseline of a lower limit is at least this much below the bottom
of the object on which the limit is set.

big_op_spacing3 The bottom of an upper limit is at least this much above the top of
the object on which the limit is set.

big_op_spacing4 The top of a lower limit is at least this much below the bottom of
the object on which the limit is set.

big_op_spacing5 This much vertical space is added above and below limits.

baseline_sep The baselines of the rows in a pile or matrix are normally this far
apart. In most cases this should be equal to the sum of num1 and
denom1.

shift_down The midpoint between the top baseline and the bottom baseline in a
matrix or pile is shifted down by this much from the axis. In most
cases this should be equal to axis_height.

Groff Version 1.20 5 January 2009 5

EQN(1) EQN(1)

column_sep This much space is added between columns in a matrix.

matrix_side_sep This much space is added at each side of a matrix.

draw_lines If this is non-zero, lines are drawn using the \D escape sequence,
rather than with the \l escape sequence and the \(ru character.

body_height The amount by which the height of the equation exceeds this is
added as extra space before the line containing the equation (using
\x). The default value is 85.

body_depth The amount by which the depth of the equation exceeds this is
added as extra space after the line containing the equation (using
\x). The default value is 35.

nroff If this is non-zero, then ndefine behaves like define and tdefine is
ignored, otherwise tdefine behaves like define and ndefine is
ignored. The default value is 0 (This is typically changed to 1 by
the eqnrc file for the ascii, latin1, utf8, and cp1047 devices.)

A more precise description of the role of many of these parameters can be found in Appen-
dix H of The TEXbook.

Macros
Macros can take arguments. In a macro body, $n where n is between 1 and 9, is replaced by the n-th

argument if the macro is called with arguments; if there are fewer than n arguments, it is replaced by
nothing. A word containing a left parenthesis where the part of the word before the left parenthesis has
been defined using the define command is recognized as a macro call with arguments; characters fol-
lowing the left parenthesis up to a matching right parenthesis are treated as comma-separated argu-
ments; commas inside nested parentheses do not terminate an argument.

sdefine name X anything X

This is like the define command, but name is not recognized if called with arguments.

include " file"
copy " file" Include the contents of file (include and copy are synonyms). Lines of file begin-
ning with .EQ or .EN are ignored.

ifdef name X anything X

If name has been defined by define (or has been automatically defined because name is the
output device) process anything; otherwise ignore anything. X can be any character not
appearing in anything.

undef name

Remove definition of name, making it undefined.

Besides the macros mentioned above, the following definitions are available: Alpha, Beta, . . ., Omega
(this is the same as ALPHA, BETA, . . ., OMEGA), ldots (three dots on the base line), and dollar.

Fonts
eqn normally uses at least two fonts to set an equation: an italic font for letters, and a roman font for
ev erything else. The existing gfont command changes the font that is used as the italic font. By
default this is I. The font that is used as the roman font can be changed using the new grfont com-
mand.

grfont f

Set the roman font to f .

The italic primitive uses the current italic font set by gfont; the roman primitive uses the current roman
font set by grfont. There is also a new gbfont command, which changes the font used by the bold
primitive. If you only use the roman, italic and bold primitives to changes fonts within an equation,
you can change all the fonts used by your equations just by using gfont, grfont and gbfont commands.

You can control which characters are treated as letters (and therefore set in italics) by using the char-
type command described above. A type of letter causes a character to be set in italic type. A type of
digit causes a character to be set in roman type.

Groff Version 1.20 5 January 2009 6

EQN(1) EQN(1)

FILES
c:/progra˜1/groff/share/groff/1.20/tmac/eqnrc Initialization file.

MATHML MODE LIMITATIONS
MathML is designed on the assumption that it cannot know the exact physical characteristics of the
media and devices on which it will be rendered. It does not support fine control of motions and sizes to
the same degree troff does. Thus:

* eqn parameters have no effect on the generated MathML.

* The special, up, down, fwd, and back operations cannot be implemented, and yield a
MathML ‘<merror>’ message instead.

* The vcenter keyword is silently ignored, as centering on the math axis is the MathML default.

* Characters that eqn over troff sets extra large – notably the integral sign – may appear too
small and need to have their ‘<mstyle>’ wrappers adjusted by hand.

As in its troff mode, eqn in MathML mode leaves the .EQ and .EN delimiters in place for displayed
equations, but emits no explicit delimiters around inline equations. They can, however, be recognized
as strings that begin with ‘$’ and end with ‘$’ and do not cross line boundaries.

See the BUGS section for translation limits specific to eqn.

BUGS
Inline equations are set at the point size that is current at the beginning of the input line.

In MathML mode, the mark and lineup features don’t work. These could, in theory, be implemented
with ‘<maligngroup>’ elements.

In MathML mode, each digit of a numeric literal gets a separate ‘<mn></mn>’ pair, and decimal points
are tagged with ‘<mo></mo>’. This is allowed by the specification, but inefficient.

SEE ALSO
groff(1), troff(1), pic(1), groff_font(5), The TEXbook

Groff Version 1.20 5 January 2009 7

EQN2GRAPH(1) EQN2GRAPH(1)

EQN2GRAPH

NAME
eqn2graph − convert an EQN equation into a cropped image

SYNOPSIS
eqn2graph [−unsafe] [−format fmt]

DESCRIPTION
Reads an EQN equation (one line) as input; produces an image file (by default in Portable Network
Graphics format) suitable for the Web as output.

Your input EQN code should not have the .EQ/.EN preamble that that normally precedes it within
groff(1) macros; nor do you need to have dollar-sign or other delimiters around the equation.

The output image will be clipped to the smallest possible bounding box that contains all the black pix-
els. Older versions of convert(1) will produce a black-on-white graphic; newer ones may produce a
black-on-transparent graphic. By specifying command-line options to be passed to convert(1) you can
give it a border, force the background transparent, set the image’s pixel density, or perform other useful
transformations.

This program uses eqn(1), groff(1), and the ImageMagick convert(1) program. These programs must
be installed on your system and accessible on your $PATH for eqn2graph to work.

OPTIONS
−unsafe

Run groff(1) in the ‘unsafe’ mode enabling the PIC macro sh to execute arbitrary commands.
The default is to forbid this.

−format fmt

Specify an output format; the default is PNG (Portable Network Graphics). Any format that
convert(1) can emit is supported.

Command-line switches and arguments not listed above are passed to convert(1).

FILES
c:/progra˜1/groff/share/groff/1.20/tmac/eqnrc The eqn(1) initialization file.

ENVIRONMENT
GROFF_TMPDIR

The directory in which temporary files will be created. If this is not set eqn2graph searches
the environment variables TMPDIR, TMP, and TEMP (in that order). Otherwise, temporary
files will be created in /tmp.

BUGS
Due to changes in the behavior of ImageMagick convert(1) that are both forward and backward-incom-
patible, mismatches between your eqn2graph and convert(1) versions may produce zero-sized or
untrimmed output images. For this version of eqn2graph you will need a version of convert(1) that
supports the −trim option; older versions of eqn2graph used −crop 0x0, which no longer has trim-
ming behavior.

SEE ALSO
pic2graph(1), grap2graph(1), eqn(1), groff(1), gs(1), convert(1).

AUTHOR
Eric S. Raymond <esr@thyrsus.com>.

Groff Version 1.20 5 January 2009 1

GDIFFMK(1) GDIFFMK(1)

GDIFFMK

NAME
gdiffmk − mark differences between groff/nroff/troff files

SYNOPSIS
gdiffmk [−aaddmark] [−cchangemark] [−ddeletemark] [−D [−B] [−Mmark1 mark2]]

[−xdiffcmd] [−−] [−−help] [−−version] file1 file2 [output]

DESCRIPTION
gdiffmk compares two groff(1), nroff(1), or troff(1) documents, file1 and file2, and creates an output
which is file2 with added ‘margin character’ (.mc) commands that indicate the differences.

If the output filename is present, the output is written there. If it is − or absent the output is written to
the standard output.

If the file1 or file2 argument is − the standard input is read for that input. Clearly both cannot be −.

Note that the output is not necessarily compatible with all macro packages and all preprocessors. See
the BUGS section below.

OPTIONS
−aaddmark

Use the addmark for source lines not in file1 but present in file2. Default: +.

−B By default, the deleted texts marked by the −D option end with an added troff break com-
mand, .br, to ensure that the deletions are marked properly. This is the only way to guarantee
that deletions and small changes get flagged. This option directs the program not to insert
these breaks; it makes no sense to use it without −D.

−cchangemark

Use the changemark for changed source lines. Default: |.

−ddeletemark

Use the deletemark for deleted source lines. Default: *.

−D Show the deleted portions from changed and deleted text. Default delimiting marks: [[....]].

−Mmark1 mark2

Change the delimiting marks for the −D option. It makes no sense to use this option without
−D.

−xdiffcmd

Use the diffcmd command to perform the comparison of file1 and file2. In particular, diffcmd

should accept the GNU diff −Dname option. Default: diff(1).

−− All the following arguments are treated as file names, even if they begin with −.

−−help Print a usage message on standard error output and exit.

−−version
Print version information on the standard output and exit.

BUGS
The output is not necessarily compatible with all macro packages and all preprocessors. A workaround
that is often successful against preprocessor problems is to run gdiffmk on the output of all the pre-
processors instead of the input source.

gdiffmk relies on the −Dname option of GNU diff(1) to make a merged ‘#ifdef’ output format. It
hasn’t been tested whether other versions of diff(1) do support this option. See also the −xdiffcmd

option.

Report bugs to bug-groff@gnu.org. Include a complete, self-contained example that will allow the bug
to be reproduced, and say which version of gdiffmk you are using.

AUTHORS
This document was written and is maintained by Mike Bianchi

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.1 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

Groff Version 1.20 5 January 2009 1

GDIFFMK(1) GDIFFMK(1)

gdiffmk is part of the groff GNU free software project. All parts of the groff package are protected by
GNU copyleft licenses. The software files are distributed under the terms of the GNU General Public
License (GPL), while the documentation files mostly use the GNU Free Documentation License (FDL).

COPYRIGHT
Copyright © 2004, 2005, 2008 Free Software Foundation, Inc.

gdiffmk is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

gdiffmk is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

SEE ALSO
groff(1), nroff(1), gtroff(1), diff(1) GRAP

BSD March 11, 2006 2

GRAP (1) BSD General Commands Manual GRAP (1)

NAME
grap — Kernighan and Bentley’s language for typesetting graphs

SYNOPSIS
grap [−d defines_file] [−D] [−l] [−M include path] [−R] [−r] [−v] [−u] [−C]

[−c] [−h] [filename ...]

DESCRIPTION
grap is an implementation of Kernighan and Bentley’s language for typesetting graphs, as described in
‘‘Grap-A Language for Typesetting Graphs, Tutorial and User Manual,’’ by Jon L. Bentley and Brian W.
Kernighan, revised May 1991, which is the primary source for information on how to use grap. As of
this writing, it is available electronically at
http://www.kohala.com/start/troff/cstr114.ps. Additional documentation and exam-
ples, packaged with grap, may have been installed locally as well. If available, paths to them can be
displayed using grap −h or grap −v (or grap −-help / grap −-version)

This version is a black box implementation of grap, and some inconsistencies are to be expected. The
remainder of this manual page will briefly outline the grap language as implemented here.

grap is a pic(1) pre-processor. It takes commands embedded in a troff(1) source file which are sur-
rounded by .G1 and .G2 macros, and rewrites them into pic commands to display the graph. Other
lines are copied. Output is always to the standard output, which is usually redirected. Input is from the
given filenames, which are read in order. A filename of − is the standard input. If no
filenames are given, input is read from the standard input.

Because grap is a pic preprocessor, and GNU pic will output TeX, it is possible to use grap with
TeX.

The −d option specifies a file of macro definitions to be read at startup, and defaults to
/usr/local/share/grap/grap.defines . The −D option inhibits the reading of any initial macros file (the −l

flag is a synonym for −D, though I do not remember why). The defines file can also be given using the
GRAP_DEFINES environment variable. (See below).

−v prints the version information on the standard output and exits. −-version is a synonym for −v.

−u makes labels unaligned by default. This version of grap uses new features of GNU pic to align
the left and right labels with the axes, that is that the left and right labels run at right angles to the text of
the paper. This may be useful in porting old grap programs. −c makes plot strings unclipped by
default. Some versions of grap allow users to place a string anywhere in the coordinate space, rather
than only in the frame. By default this version of grap does not plot any string centered outside the
frame. −c allows strings to be placed anywhere. See also the clipped and unclipped string modi-
fiers described in the plot statement.

−M is followed by a colon-separated list of directories used to search for relative pathnames included via
copy. The path is also used to locate the defines file, so if the −d changes the defines file name to a rel-
ative name, it will be searched for in the path given by −M. The search path always includes the current
directory, and by default that directory is searched last.

All numbers used internally by grap are double precision floating point values. Sometimes using float-
ing point numbers has unintended consequences. To help avoid these problems, grap can use two
thresholds for comparison of floating point numbers, set by −R or −r. The −R flag sets coarse compari-
son mode, which is suitable for most applications. If you are plotting small values – less than 1e-6 or so
– consider using −r which uses very fine comparisons between numbers. You may also want to rescale
your plotted values to be larger in magnitude. The coarse comarisons are used by default.

To be precise, the value by which two numbers must differ for grap to consider them not equal is called
the comparison limit and the smallest non-zero number is called the minimum value. The values a given
version of grap uses for these are included in the output of −v or −h.

BSD March 11, 2006 3

GRAP (1) BSD General Commands Manual GRAP (1)

All grap commands are included between .G1 and .G2 macros, which are consumed by grap. The
output contains pic between .PS and .PE macros. Any arguments to the .G1 macro in the input are
arguments to the .PS macro in the output, so graphs can be scaled just like pic diagrams. If −C is
given, any macro beginning with .G1 or .G2 is treated as a .G1 or .G2 macro, for compatibility with old
versions of troff. Using −C also forces pure troff syntax on embedded font change commands when
strings have the size attribute, and all strings to be unclipped.

The −h flag prints a brief help message and exits. −-help is a synonym for −h.

It is possible for someone to cause grap to fail by passing a bad format string and data to the sprintf
command. If grap is integrated as part of the printing system, this could conceivably provided a path to
breaching security on the machine. If you choose to use grap as part of a printing system run by the
super-user, you should disable sprintf commands. This can be done by calling grap with the −S

flag, setting the GRAP_SAFER environment variable, or compiling with the GRAP_SAFER preprocessor
symbol defined. (The GNU configure script included with grap will define that preprocessor symbol if
the −-with-grap-safe option is given.)

The grap commands are sketched below. Refer to Kernighan and Bentley’s paper for the details.

New versions of groff(1) will invoke grap if −G is given.

Commands
Commands are separated from one another by newlines or semicolons (;).

frame [line_description] [ht height wid width] [[(top bottom left right)
line_description] ...]

frame [ht height wid width] [line_description] [[(top bottom left right)
line_description] ...]

This describes how the axes for the graph are drawn. A line_description is a pic line
description, e.g., dashed 0.5, or the literal solid. It may also include a color keyword fol-
lowed by the color to draw the string in double quotes. Any color understood by the underlying
groff system can be used. Color can only be used under GNU pic, and is not available in compat-
ibility mode. Similarly, for pic implementations that understand thickness, that attribute may
be used with a real valued parameter. Thickness is not available in compatibility mode.

If the first line_description is given, the frame is drawn with that style. The default is
solid. The height and width of the frame can also be specified in inches. The default line style
can be over-ridden for sides of the frame by specifying additional parameters to frame.

If no plotting commands have been given before the frame command is issued, the frame will
be output at that point in the plotting stream relative to embedded troff or pic commands.
Otherwise the frame is output before the first plotted object (even invisible ones).

ht and wid are in inches by default, but can be any groff unit. If omitted, the dimensions are
2 inches high by 3 inches wide.

coord [name] [x expr, expr] [y expr, expr] [log x log y log log]

The coord command specifies a new coordinate system or sets limits on the default system. It
defines the largest and smallest values that can be plotted, and therefore the scale of the data in
the frame. The limits for the x and y coordinate systems can be given separately. If a name is
given, that coordinate system is defined, if not the default system is modified.

A coordinate system created by one coord command may be modified by subsequent coord
commands. A grap program may declare a coordinate space using coord, copy a file of data
through a macro that plots the data and finds its maxima and minima, and then define the size of
the coordinate system with a second coord statement.

This command also determines if a scale is plotted logarithmically. log log means the same
thing as log x log y.

BSD March 11, 2006 4

GRAP (1) BSD General Commands Manual GRAP (1)

draw [line_name] [line_description] [plot_string]

The draw command defines the style with which a given line will be plotted. If line_name is
given, the style is associated with that name, otherwise the default style is set.
line_description is a pic line description, and the optional plot_string is a string to
be centered at each point. The default line description is invis, and the default plotting string is
a centered bullet, so by default each point is a filled circle, and they are unconnected. If points
are being connected, each draw command ends any current line and begins a new one.

When defining a line style, that is the first draw command for a given line name, specifying no
plot string means that there are to be no plot strings. Omitting the plot string on subsequent
draw commands addressing the same named line means not to change the plot string. If a line
has been defined with a plot string, and the format is changed by a subsequent draw statement,
the plot string can be removed by specifying "" in the draw statement.

The plot string can have its format changed through several string_modifiers. String_modifiers
are described in the description of the plot command.

The standard defines file includes several macros useful as plot strings, including bullet,
square, and delta.

new is a synonym for draw.

next [line_name] at [coordinates_name] expr, expr [line_description]

The next command plots the given point using the line style given by line_name, or the
default if none is given. If line_name is given, it should have been defined by an earlier draw
command, if not a new line style with that name is created, initialized the same way as the default
style. The two expressions give the point’s x and y values, relative to the optional coordinate sys-
tem. That system should have been defined by an earlier coord command, if not, grap will exit.
If the optional line_description is given, it overrides the style’s default line description.
You cannot over-ride the plotting string. To use a different plotting string use the plot com-
mand.

The coordinates may optionally be enclosed in parentheses: (expr, expr)

quoted_string [string_modifiers] [, quoted_string [string_modifiers]] ... at

[coordinates_name] expr, expr

plot expr [format_string] at [coordinates_name] expr, expr

These commands both plot a string at the given point. In the first case the literal strings are
stacked above each other. The string_modifiers include the pic justification modifiers (ljust,
rjust, above, and below), and absolute and relative size modifiers. See the pic documen-
tation for the description of the justification modifiers. grap also supports the aligned and
unaligned modifiers which are briefly noted in the description of the label command.

The standard defines file includes several macros useful as plot strings, including bullet,
square, and delta.

Strings placed by either format of the plot command are restricted to being within the frame.
This can be overriden by using the unclipped attribute, which allows a string to be plotted in
or out of the frame. The −c and −C flags set unclipped on all strings, and to prevent a string
from being plotted outside the frame when those flags are active, the clipped attribute can be
used to retore clipping behavior. Though clipped or unclipped can be applied to any
string, it only has meaning for plot statements.

size expr sets the string size to expr points. If expr is preceded by a + or -, the size is
increased or decreased by that many points.

If color and a color name in double quotes appears, the string will be rendered in that color
under a version of GNU troff that supports color. Color is not available in compatibility mode.

BSD March 11, 2006 5

GRAP (1) BSD General Commands Manual GRAP (1)

In the second version, the expr is converted to a string and placed on the graph.
format_string is a printf(3) format string. Only formatting escapes for printing floating
point numbers make sense. The format string is only respected if the sprintf command is also
active. See the description of sprintf for the various ways to disable it. Plot and sprintf
respond differently when grap is running safely. Sprintf ignores any arguments, passing the
format string through without substitution. plot ignores the format string completely, plotting
expr using the "%g" format.

Points are specified the same way as for next commands, with the same consequences for unde-
fined coordinate systems.

The second form of this command is because the first form can be used with a grap sprintf
expression (See Expressions).

ticks (left right top bottom)[(in out) [expr]] [on auto coord_name]

ticks (left right top bottom) (in out) [expr] [up expr down expr left expr

right expr] at [coord_name] expr [format_string] [[, expr [format_string]] . . .]

ticks (left right top bottom) (in out) [expr] [up expr down expr left expr

right expr] from [coord_name] start_expr to end_expr [by [+ - ∗ /] by_expr]
[format_string]

ticks [left right top bottom] off

This command controls the placement of ticks on the frame. By default, ticks are automatically
generated on the left and bottom sides of the frame.

The first version of this command turns on the automatic tick generation for a given side. The in
or out parameter controls the direction and length of the ticks. If a coord_name is specified,
the ticks are automatically generated using that coordinate system. If no system is specified, the
default coordinate system is used. As with next and plot, the coordinate system must be
declared before the ticks statement that references it. This syntax for requesting automatically
generated ticks is an extension, and will not port to older grap implementations.

The second version of the ticks command overrides the automatic placement of the ticks by
specifying a list of coordinates at which to place the ticks. If the ticks are not defined with
respect to the default coordinate system, the coord_name parameter must be given. For each
tick a printf(3) style format string can be given. The format_string defaults to "%g".
The format string can also take string modifiers as described in the plot command. To place
ticks with no labels, specify format_string as "".

If sprintf is disabled, ticks behaves as plot with respect to the format string.

The labels on the ticks may be shifted by specifying a direction and the distance in inches to off-
set the label. That is the optional direction and expression immediately preceding the at.

The third format of the ticks command over-rides the default tick generation with a set of ticks
ar regular intervals. The syntax is reminiscent of programming language for loops. Ticks are
placed starting at start_expr ending at end_expr one unit apart. If the by clause is speci-
fied, ticks are by_expr units apart. If an operator appears before by_expr each tick is oper-
ated on by that operator instead of +. For example

ticks left out from 2 to 32 by ∗2

will put ticks at 2, 4, 8, 16, and 32. If format_string is specified, all ticks are formatted
using it.

The parameters preceding the from act as described above.

The at and for forms of tick command may both be issued on the same side of a frame. For
example:

BSD March 11, 2006 6

GRAP (1) BSD General Commands Manual GRAP (1)

ticks left out from 2 to 32 by ∗2
ticks left in 3, 5, 7

will put ticks on the left side of the frame pointing out at 2, 4, 8, 16, and 32 and in at 3, 5, and 7.

The final form of ticks turns off ticks on a given side. If no side is given the ticks for all sides
are cancelled.

tick is a synonym for ticks.

grid (left right top bottom) [ticks off] [line_description] [up expr down

expr left expr right expr] [on auto [coord_name]]

grid (left right top bottom) [ticks off] [line_description] [up expr down

expr left expr right expr] at [coord_name] expr [format_string] [[, expr
[format_string]] . . .]

grid (left right top bottom) [ticks off] [line_description] [up expr down

expr left expr right expr] from [coord_name] start_expr to end_expr [by
[+ - ∗ /] by_expr] [format_string]

The grid command is similar to the ticks command except that grid specifies the placement
of lines in the frame. The syntax is similar to ticks as well.

By specifying ticks off in the command, no ticks are drawn on that side of the frame. If
ticks appear on a side by default, or have been declared by an earlier ticks command, grid
does not cancel them unless ticks off is specified.

Instead of a direction for ticks, grid allows the user to pick a line description for the grid lines.
The usual pic line descriptions are allowed.

Grids are labelled by default. To omit labels, specify the format string as "".

If sprintf is disabled, grid behaves as plot with respect to the format string.

label (left right top bottom) quoted_string [string_modifiers] [,
quoted_string [string_modifiers]] ... [up expr down expr left expr right

expr]

The label command places a label on the given axis. It is possible to specify several labels,
which will be stacked over each other as in pic. The final argument, if present, specifies how
many inches the label is shifted from the axis.

By default the labels on the left and right labels run parallel to the frame. You can cancel this by
specifying unaligned as a string_modifier.

circle at [coordinate_name] expr, expr [radius expr] [linedesc]

This draws an circle at the point indicated. By default, the circle is small, 0.025 inches. This can
be over-ridden by specifying a radius. The coordinates of the point are relative to the named
coordinate system, or the default system if none is specified.

This command has been extended to take a line description, e.g., dotted. It also accepts the
filling extensions described below in the bar command. It will also accept a color keyword
that gives the color of the outline of the circle in double quotes and a fillcolor command that
sets the color to fill the circle with similarly. Colors are only available when compatibility mode
is off, and using a version of GNU pic that supports color.

line [line_description] from [coordinate_name] expr, expr to

[coordinate_name] expr, expr [line_description]

arrow [line_description] from [coordinate_name] expr, expr to

[coordinate_name] expr, expr [line_description]

BSD March 11, 2006 7

GRAP (1) BSD General Commands Manual GRAP (1)

This draws a line or arrow from the first point to the second using the given style. The default
line style is solid. The line_description can be given either before the from or after
the to clause. If both are given the second is used. It is possible to specify one point in one
coordinate system and one in another, note that if both points are in a named coordinate system
(even if they are in the same named coordinate system), both points must have
coordinate_name given.

copy ["filename"] [until "string"] [thru macro]

The copy command imports data from another file into the current graph. The form with only a
filename given is a simple file inclusion; the included file is simply read into the input stream and
can contain arbitrary grap commands. The more common case is that it is a number list; see
Number Lists below.

The second form takes lines from the file, splits them into words delimited by one or more spa-
ces, and calls the given macro with those words as parameters. The macro may either be defined
here, or be a macro defined earlier. See Macros for more information on macros.

The filename may be omitted if the until clause is present. If so the current file is treated as
the input file until string is encountered at the beginning of the line.

copy is one of the workhorses of grap. Check out the paper and
/usr/local/share/examples/grap for more details. Confirm the location of the exam-
ples directory using the −v flag.

print (expr string)

Prints its argument to the standard error.

sh block

This passes block to sh(1). Unlike K&B grap no macro or variable expansion is done. I
believe that this is also true for GNU pic version 1.10. See the Macros section for information
on defining blocks.

pic pic_statement

This issues the given pic statements in the enclosing .PS and .PE at the point where the com-
mand is issued.

Statements that begin with a period are considered to be troff(statements) and are output in the
enclosing .PS and .PE at the point where the command appears.

For the purposes of relative placement of pic or troff commands, the frame is output immedi-
ately before the first plotted object, or the frame statement, if any. If the user specifies pic or
troff commands and neither any plotable object nor a frame command, the commands will
not be output.

graph Name pic_commands

This command is used to position graphs with respect to each other. The current graph is given
the pic name Name (names used by pic begin with capital letters). Any pic commands fol-
lowing the graph are used to position the next graph. The frame of the graph is available for use
with pic name Frame. The following places a second graph below the first:

graph Linear
[graph description]
graph Exponential with .Frame.n at \

Linear.Frame.s - (0, .05)
[graph description]

name = expr

This assigns expr to the variable name. grap has only numeric (double) variables.

BSD March 11, 2006 8

GRAP (1) BSD General Commands Manual GRAP (1)

Assignment creates a variable if it does not exist. Variables persist across graphs. Assignments
can cascade; a = b = 35 assigns 35 to a and b.

bar (up right) [coordinates_name] offset ht height [wid width] [base
base_offset] [line_description]

bar [coordinates_name] expr, expr, [coordinates_name] expr, expr,
[line_description]

The bar command facilitates drawing bar graphs. The first form of the command describes the
bar somewhat generally and has grap place it. The bar may extend up or to the right, is centered
on offset and extends up or right height units (in the given coordinate system). For exam-
ple

bar up 3 ht 2

draws a 2 unit high bar sitting on the x axis, centered on x=3. By default bars are 1 unit wide, but
this can be changed with the wid keyword. By default bars sit on the base axis, i.e., bars
directed up will extend from y=0. That may be overridden by the base keyword. (The bar
described above has corners (2.5, 0) and (3.5, 2).)

The line description has been extended to include a fill expr keyword that specifies the
shading inside the bar. Bars may be drawn in any line style. They support the color and
fillcolor keywords described under circle.

The second form of the command draws a box with the two points as corners. This can be used
to draw boxes highlighting certain data as well as bar graphs. Note that filled bars will cover data
drawn under them.

Control Flow
if expr then block [else block]

The if statement provides simple conditional execution. If expr is non-zero, the block after
the then statement is executed. If not the block after the else is executed, if present. See
Macros for the definition of blocks. Early versions of this implementation of grap treated the
blocks as macros that were defined and expanded in place. This led to unnecessary confusion
because explicit separators were sometimes called for. Now, grap inserts a separator (;) after
the last character in block, so constructs like

if (x == 3) { y = y + 1 }
x = x + 1

behave as expected. A separator is also appended to the end of a for block.

for name from from_expr to to_expr [by [+ - ∗ /] by_expr] do block

This command executes block iteratively. The variable name is set to from_expr and incre-
mented by by_expr until it exceeds to_expr. The iteration has the semantics defined in the
ticks command. The definition of block is discussed in Marcos. See also the note about
implicit separators in the description of the if command.

An = can be used in place of from.

Expressions
grap supports most standard arithmetic operators: + - / ∗ ˆ. The carat (ˆ) is exponentiation. In an if

statement grap also supports the C logical operators ==, !=, &&, || and unary !. Also in an if, == and
!= are overloaded for the comparison of quoted strings. Parentheses are used for grouping.

Assignment is not allowed in an expression in any context, except for simple cascading of assignments.
a = b = 35 works as expected; a = 3.5 ∗ (b = 10) does not execute.

BSD March 11, 2006 9

GRAP (1) BSD General Commands Manual GRAP (1)

grap supports the following functions that take one argument: log, exp, int, sin, cos, sqrt,
rand. The logarithms are base 10 and the trigonometric functions are in radians. eexp returns Euler’s
number to the given power and ln returns the natural logarithm. The natural log and exponentiation
functions are extensions and are probably not available in other grap implementations.

rand returns a random number uniformly distributed on [0,1). The following two-argument functions
are supported: atan2, min, max. atan2 works just like atan2(3). The random number generator
can be seeded by calling srand with a single parameter (converted internally to an integer). Because its
return value is of no use, you must use srand as a separate statement, it is not part of a valid expression.
srand is not portable.

The getpid function takes no arguments and returns the process id. This may be used to seed the ran-
dom number generator, but do not expect cryptographically random values to result.

Other than string comparison, no expressions can use strings. One string valued function exists:
sprintf (format, [expr [, expr]]). It operates like sprintf(3), except returning the value.
It can be used anywhere a quoted string is used. If grap is run with −S, the environment variable
GRAP_SAFER is defined, or grap has been compiled for safer operation, the sprintf command will
return the format string. This mode of operation is only intended to be used only if grap is being used
as part of a super-user enabled print system.

Macros
grap has a simple but powerful macro facility. Macros are defined using the define command :

define name block

undefine name

Every occurrence of name in the program text is replaced by the contents of block. block is
defined by a series of statements in nested { }’s, or a series of statements surrounded by the same
letter. An example of the latter is

define foo X coord x 1,3 X
Each time foo appears in the text, it will be replaced by coord x 1,3. Macros are literal,
and can contain newlines. If a macro does not span multiple lines, it should end in a semicolon to
avoid parsing errors.

Macros can take parameters, too. If a macro call is followed by a parenthesized, comma-sepa-
rated list the values starting with $1 will be replaced in the macro with the elements of the list. A
$ not followed by a digit is left unchanged. This parsing is very rudimentary; no nesting or
parentheses or escaping of commas is allowed. Also, there is no way to say argument 1 followed
by a digit (${1}0 in sh(1)).

The following will draw a line with slope 1.

define foo { next at $1, $2 }
for i from 1 to 5 { foo(i,i) }

Macros persist across graphs. The file /usr/local/share/grap/grap.defines con-
tains simple macros for plotting common characters. The undefine command deletes a macro.

See the directory /usr/local/share/examples/grap for more examples of macros.
Confirm the location of the examples directory using the −v flag.

Number Lists
A whitespace-separated list of numbers is treated specially. The list is taken to be points to be plotted
using the default line style on the default coordinate system. If more than two numbers are given, the
extra numbers are taken to be additional y values to plot at the first x value. Number lists in DWB grap

can be comma-separated, and this grap supports that as well. More precisely, numbers in number lists
can be separated by either whitespace, commas, or both.

1 2 3
4 5 6

BSD March 11, 2006 10

GRAP (1) BSD General Commands Manual GRAP (1)

Will plot points using the default line style at (1,2), (1,3),(4,5) and (4,6). A simple way to plot a set of
numbers in a file named ./data is:

.G1
copy "./data"
.G2

Pic Macros
grap defines pic macros that can be used in embedded pic code to place elements in the graph. The
macros are x_gg, y_gg, and xy_gg. These macros define pic distances that correspond to the given
argument. They can be used to size boxes or to plot pic constructs on the graph. To place a given con-
struct on the graph, you should add Frame.Origin to it. Other coordinate spaces can be used by replacing
gg with the name of the coordinate space. A coordinate space named gg cannot be reliably accessed by
these macros.

The macros are emitted immediately before the frame is drawn.

DWB grap may use these as part of its implementation. This grap provides them only for compatibil-
ity. Note that these are very simple macros, and may not do what you expect under complex conditions.

ENVIRONMENT VARIABLES
If the environment variable GRAP_DEFINES is defined, grap will look for its defines file there. If that
value is a relative path name the path specified in the −M option will be searched for it.
GRAP_DEFINES overrides the compiled in location of the defines file, but may be overridden by the −d

or −D flags.

If GRAP_SAFER is set, sprintf is disabled to prevent forcing grap to core dump or smash the stack.

FILES
/usr/local/share/grap/grap.defines

SEE ALSO
atan2(3), groff(1), pic(1), printf(3), sh(1), sprintf(3), troff(1)

If documentation and examples have been installed, grap −-version or grap −-help will display
the locations.

BUGS
There are several small incompatibilities with K&R grap. They include the sh command not expand-
ing variables and macros, and a more strict adherence to parameter order in the internal commands.

Although much improved, the error reporting code can still be confused. Notably, an error in a macro is
not detected until the macro is used, and it produces unusual output in the error message.

Iterating many times over a macro with no newlines can run grap out of memory.

AUTHOR
This implementation was done by Ted Faber 〈faber@lunabase.org〉. Bruce Lilly 〈blilly@erols.com〉 con-
tributed many bug fixes, including a considerable revamp of the error reporting code. If you can actually
find an error in your grap code, you can probably thank him. grap was designed and specified by
Brian Kernighan and Jon Bentley.

Groff Version 1.20 5 January 2009 11

GRAP2GRAPH(1) GRAP2GRAPH(1)

GRAP2GRAPH

NAME
grap2graph − convert a grap diagram into a cropped bitmap image

SYNOPSIS
grap2graph [−unsafe] [−resolution M|MxN] [−format fmt]

DESCRIPTION
Reads a grap program as input; produces an image file (by default in Portable Network Graphics for-
mat) suitable for the Web as output. For a description of the grap language, see grap(1).

Your graph specification should not be wrapped with the .G1 and .G2 macros that normally guard it
within groff(1) macros.

The output image will be a black-on-white graphic clipped to the smallest possible bounding box that
contains all the black pixels. By specifying command-line options to be passed to convert(1) you can
give it a border, set the background transparent, set the image’s pixel density, or perform other useful
transformations.

This program uses grap(1), pic(1), groff(1), and the ImageMagick convert(1) program. These pro-
grams must be installed on your system and accessible on your $PATH for grap2graph to work.

OPTIONS
−unsafe

Run pic(1) and groff(1) in the ‘unsafe’ mode enabling the PIC macro sh to execute arbitrary
commands. The default is to forbid this.

−format fmt

Specify an output format; the default is PNG (Portable Network Graphics). Any format that
convert(1) can emit is supported.

Command-line switches and arguments not listed above are passed to convert(1).

ENVIRONMENT
GROFF_TMPDIR

The directory in which temporary files will be created. If this is not set grap2graph searches
the environment variables TMPDIR, TMP, and TEMP (in that order). Otherwise, temporary
files will be created in /tmp.

SEE ALSO
pic2graph(1), eqn2graph(1), pic(1), groff(1), gs(1), convert(1).

AUTHOR
Eric S. Raymond <esr@thyrsus.com>

Groff Version 1.20 5 January 2009 1

GRN(1) GRN(1)

GRN

NAME
grn − groff preprocessor for gremlin files

SYNOPSIS
grn [−Cv] [−Tdev] [−Mdir] [−Fdir] [file...]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
grn is a preprocessor for including gremlin pictures in groff input. grn writes to standard output, pro-
cessing only input lines between two that start with .GS and .GE. Those lines must contain grn com-
mands (see below). These commands request a gremlin file, and the picture in that file is converted and
placed in the troff input stream. The .GS request may be followed by a C, L, or R to center, left, or
right justify the whole gremlin picture (default justification is center). If no file is mentioned, the stan-
dard input is read. At the end of the picture, the position on the page is the bottom of the gremlin pic-
ture. If the grn entry is ended with .GF instead of .GE, the position is left at the top of the picture.

Please note that currently only the −me macro package has support for .GS, .GE, and .GF.

The following command-line options are understood:

−Tdev Prepare output for printer dev. The default device is ps. See groff(1) for acceptable devices.

−Mdir Prepend dir to the default search path for gremlin files. The default path is (in that order) the
current directory, the home directory, c:/progra˜1/groff/lib/groff/site-tmac, c:/pro-
gra˜1/groff/share/groff/site-tmac, and c:/progra˜1/groff/share/groff/1.20/tmac.

−Fdir Search dir for subdirectories devname (name is the name of the device) for the DESC file
before the default font directories c:/progra˜1/groff/share/groff/site-font, c:/pro-
gra˜1/groff/share/groff/1.20/font, and /usr/lib/font.

−C Recognize .GS and .GE (and .GF) even when followed by a character other than space or
newline.

−v Print the version number.

GRN COMMANDS
Each input line between .GS and .GE may have one grn command. Commands consist of one or two
strings separated by white space, the first string being the command and the second its operand. Com-
mands may be upper or lower case and abbreviated down to one character.

Commands that affect a picture’s environment (those listed before default, see below) are only in effect
for the current picture: The environment is reinitialized to the defaults at the start of the next picture.
The commands are as follows:

1 N

2 N

3 N

4 N Set gremlin’s text size number 1 (2, 3, or 4) to N points. The default is 12 (16, 24, and 36,
respectively).

roman f

italics f

bold f

special f

Set the roman (italics, bold, or special) font to troff ’s font f (either a name or number). The
default is R (I, B, and S, respectively).

l f

stipple f

Set the stipple font to troff ’s stipple font f (name or number). The command stipple may be
abbreviated down as far as ‘st’ (to avoid confusion with special). There is no default for stip-
ples (unless one is set by the default command), and it is invalid to include a gremlin picture
with polygons without specifying a stipple font.

x N

Groff Version 1.20 5 January 2009 1

GRN(1) GRN(1)

scale N Magnify the picture (in addition to any default magnification) by N , a floating point number
larger than zero. The command scale may be abbreviated down to ‘sc’.

narrow N

medium N

thick N

Set the thickness of gremlin’s narrow (medium and thick, respectively) lines to N times 0.15pt
(this value can be changed at compile time). The default is 1.0 (3.0 and 5.0, respectively),
which corresponds to 0.15pt (0.45pt and 0.75pt, respectively). A thickness value of zero
selects the smallest available line thickness. Negative values cause the line thickness to be
proportional to the current point size.

pointscale <off/on>

Scale text to match the picture. Gremlin text is usually printed in the point size specified with
the commands 1, 2, 3, or 4, reg ardless of any scaling factors in the picture. Setting pointscale
will cause the point sizes to scale with the picture (within troff ’s limitations, of course). An
operand of anything but off will turn text scaling on.

default Reset the picture environment defaults to the settings in the current picture. This is meant to
be used as a global parameter setting mechanism at the beginning of the troff input file, but can
be used at any time to reset the default settings.

width N

Forces the picture to be N inches wide. This overrides any scaling factors present in the same
picture. ‘width 0’ is ignored.

height N

Forces picture to be N inches high, overriding other scaling factors. If both ‘width’ and
‘height’ are specified the tighter constraint will determine the scale of the picture. Height and
width commands are not saved with a default command. They will, however, affect point
size scaling if that option is set.

file name

Get picture from gremlin file name located the current directory (or in the library directory;
see the −M option above). If two file commands are given, the second one overrides the first.
If name doesn’t exist, an error message is reported and processing continues from the .GE
line.

NOTES ABOUT GROFF
Since grn is a preprocessor, it doesn’t know about current indents, point sizes, margins, number regis-
ters, etc. Consequently, no troff input can be placed between the .GS and .GE requests. However,
gremlin text is now processed by troff , so anything valid in a single line of troff input is valid in a line
of gremlin text (barring ‘.’ directives at the beginning of a line). Thus, it is possible to have equations
within a gremlin figure by including in the gremlin file eqn expressions enclosed by previously defined
delimiters (e.g. $$).

When using grn along with other preprocessors, it is best to run tbl before grn, pic, and/or ideal to
avoid overworking tbl. Eqn should always be run last.

A picture is considered an entity, but that doesn’t stop troff from trying to break it up if it falls off the
end of a page. Placing the picture between ‘keeps’ in −me macros will ensure proper placement.

grn uses troff ’s number registers g1 through g9 and sets registers g1 and g2 to the width and height of
the gremlin figure (in device units) before entering the .GS request (this is for those who want to re-
write these macros).

GREMLIN FILE FORMAT
There exist two distinct gremlin file formats, the original format from the AED graphic terminal ver-
sion, and the SUN or X11 version. An extension to the SUN /X11 version allowing reference points
with negative coordinates is not compatible with the AED version. As long as a gremlin file does not
contain negative coordinates, either format will be read correctly by either version of gremlin or grn.
The other difference to the SUN /X11 format is the use of names for picture objects (e.g., POLYGON,
CURVE) instead of numbers. Files representing the same picture are shown in Table 1 in each format.

sungremlinfile gremlinfile

Groff Version 1.20 5 January 2009 2

GRN(1) GRN(1)

0 240.00 128.00 0 240.00 128.00
CENTCENT 2
240.00 128.00 240.00 128.00
185.00 120.00 185.00 120.00
240.00 120.00 240.00 120.00
296.00 120.00 296.00 120.00
∗ -1.00 -1.00
2 3 2 3
10 A Triangle 10 A Triangle
POLYGON 6
224.00 416.00 224.00 416.00
96.00 160.00 96.00 160.00
384.00 160.00 384.00 160.00
∗ -1.00 -1.00
5 1 5 1
0 0
-1 -1

Table 1. File examples

• The first line of each gremlin file contains either the string gremlinfile (AED version) or sun-
gremlinfile (SUN /X11)

• The second line of the file contains an orientation, and x and y values for a positioning point,
separated by spaces. The orientation, either 0 or 1, is ignored by the SUN /X11 version. 0
means that gremlin will display things in horizontal format (drawing area wider than it is tall,
with menu across top). 1 means that gremlin will display things in vertical format (drawing
area taller than it is wide, with menu on left side). x and y are floating point values giving a
positioning point to be used when this file is read into another file. The stuff on this line really
isn’t all that important; a value of ‘‘1 0.00 0.00’’ is suggested.

• The rest of the file consists of zero or more element specifications. After the last element
specification is a line containing the string ‘‘-1’’.

• Lines longer than 127 characters are chopped to this limit.

ELEMENT SPECIFICATIONS
• The first line of each element contains a single decimal number giving the type of the element

(AED version) or its ASCII name (SUN /X11 version). See Table 2.

gremlin File Format − Object Type Specification

AED Number SUN/X11 Name Description
0 BOTLEFT bottom-left-justified text
1 BOTRIGHT bottom-right-justified text
2 CENTCENT center-justified text
3 VECTOR vector
4 ARC arc
5 CURVE curve
6 POLYGON polygon
7 BSPLINE b-spline
8 BEZIER Bézier

10 TOPLEFT top-left-justified text
11 TOPCENT top-center-justified text
12 TOPRIGHT top-right-justified text
13 CENTLEFT left-center-justified text
14 CENTRIGHT right-center-justified text
15 BOTCENT bottom-center-justified text

Table 2.

Groff Version 1.20 5 January 2009 3

GRN(1) GRN(1)

Type Specifications in gremlin Files

• After the object type comes a variable number of lines, each specifying a point used to display
the element. Each line contains an x-coordinate and a y-coordinate in floating point format,
separated by spaces. The list of points is terminated by a line containing the string ‘‘-1.0 -1.0’’
(AED version) or a single asterisk, ‘‘∗’’ (SUN /X11 version).

• After the points comes a line containing two decimal values, giving the brush and size for the
element. The brush determines the style in which things are drawn. For vectors, arcs, and
curves there are six valid brush values:

1 − thin dotted lines
2 − thin dot-dashed lines
3 − thick solid lines
4 − thin dashed lines
5 − thin solid lines
6 − medium solid lines

For polygons, one more value, 0, is valid. It specifies a polygon with an invisible border. For
text, the brush selects a font as follows:

1 − roman (R font in groff)
2 − italics (I font in groff)
3 − bold (B font in groff)
4 − special (S font in groff)

If you’re using grn to run your pictures through groff , the font is really just a starting font:
The text string can contain formatting sequences like ‘‘\fI’’ or ‘‘\d’’ which may change the font
(as well as do many other things). For text, the size field is a decimal value between 1 and 4.
It selects the size of the font in which the text will be drawn. For polygons, this size field is
interpreted as a stipple number to fill the polygon with. The number is used to index into a
stipple font at print time.

• The last line of each element contains a decimal number and a string of characters, separated
by a single space. The number is a count of the number of characters in the string. This infor-
mation is only used for text elements, and contains the text string. There can be spaces inside
the text. For arcs, curves, and vectors, this line of the element contains the string ‘‘0’’.

NOTES ON COORDINATES
gremlin was designed for AEDs, and its coordinates reflect the AED coordinate space. For vertical pic-
tures, x-values range 116 to 511, and y-values from 0 to 483. For horizontal pictures, x-values range
from 0 to 511 and y-values range from 0 to 367. Although you needn’t absolutely stick to this range,
you’ll get best results if you at least stay in this vicinity. Also, point lists are terminated by a point of
(-1, -1), so you shouldn’t ever use negative coordinates. gremlin writes out coordinates using format
‘‘%f1.2’’; it’s probably a good idea to use the same format if you want to modify the grn code.

NOTES ON SUN/X11 COORDINATES
There is no longer a restriction on the range of coordinates used to create objects in the SUN /X11 ver-
sion of gremlin. Howev er, files with negative coordinates will cause problems if displayed on the AED.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devname/DESC

Device description file for device name.

SEE ALSO
gremlin(1), groff(1), pic(1), ideal(1)

HISTORY
David Slattengren and Barry Roitblat wrote the original Berkeley grn.

Daniel Senderowicz and Werner Lemberg modified it for groff .

Groff Version 1.20 5 January 2009 4

GRODVI(1) GRODVI(1)

GRODVI

NAME
grodvi − convert groff output to TeX dvi format

SYNOPSIS
grodvi [−dlv] [−Fdir] [−p papersize] [−wn] [files . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
grodvi is a driver for groff that produces TEX dvi format. Normally it should be run by groff −Tdvi.
This will run troff −Tdvi; it will also input the macros in c:/pro-
gra˜1/groff/share/groff/1.20/tmac/dvi.tmac.

The dvi file generated by grodvi can be printed by any correctly-written dvi driver. The troff drawing
primitives are implemented using the tpic version 2 specials. If the driver does not support these, the
\D commands will not produce any output.

There is an additional drawing command available:

\D’R dh dv’
Draw a rule (solid black rectangle), with one corner at the current position, and the diagonally
opposite corner at the current position +(dh,dv). Afterwards the current position will be at the
opposite corner. This produces a rule in the dvi file and so can be printed even with a driver
that does not support the tpic specials unlike the other \D commands.

The groff command \X’anything’ is translated into the same command in the dvi file as would be pro-
duced by \special{anything} in TEX; anything may not contain a newline.

For inclusion of EPS image files, −Tdvi loads pspic.tmac automatically, providing the PSPIC macro.
Please check groff_tmac(5) for a detailed description.

Font files for grodvi can be created from tfm files using tfmtodit(1). The font description file should
contain the following additional commands:

internalname name

The name of the tfm file (without the .tfm extension) is name.

checksum n The checksum in the tfm file is n.

designsize n The designsize in the tfm file is n.

These are automatically generated by tfmtodit.

The default color for \m and \M is black. Currently, the drawing color for \D commands is always
black, and fill color values are translated to gray.

In troff the \N escape sequence can be used to access characters by their position in the corresponding
tfm file; all characters in the tfm file can be accessed this way.

By design, the DVI format doesn’t care about physical dimensions of the output medium. Instead,
grodvi emits the equivalent to TEX’s \special{papersize=width,length} on the first page; dvips (and
possibly other DVI drivers) then sets the page size accordingly. If either the page width or length is not
positive, no papersize special is output.

OPTIONS
−d Do not use tpic specials to implement drawing commands. Horizontal and vertical lines will

be implemented by rules. Other drawing commands will be ignored.

−Fdir Prepend directory dir/devname to the search path for font and device description files; name is
the name of the device, usually dvi.

−l Specify landscape orientation.

−p papersize

Specify paper dimensions. This overrides the papersize, paperlength, and paperwidth com-
mands in the DESC file; it accepts the same arguments as the papersize command (see
groff_font(5) for details).

−v Print the version number.

Groff Version 1.20 5 January 2009 1

GRODVI(1) GRODVI(1)

−wn Set the default line thickness to n thousandths of an em. If this option isn’t specified, the line
thickness defaults to 0.04 em.

USAGE
There are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are grouped into
families T and H having members in each of these styles:

TR CM Roman (cmr10)
TI CM Text Italic (cmti10)
TB CM Bold Extended Roman (cmbx10)
TBI CM Bold Extended Text Italic (cmbxti10)
HR CM Sans Serif (cmss10)
HI CM Slanted Sans Serif (cmssi10)
HB CM Sans Serif Bold Extended (cmssbx10)
HBI CM Slanted Sans Serif Bold Extended (cmssbxo10)

There are also the following fonts which are not members of a family:

CW CM Typewriter Text (cmtt10)
CWI CM Italic Typewriter Text (cmitt10)

Special fonts are MI (cmmi10), S (cmsy10), EX (cmex10), SC (cmtex10, only for CW), and, perhaps
surprisingly, TR, TI, and CW, due to the different font encodings of text fonts. For italic fonts, CWI
is used instead of CW.

Finally, the symbol fonts of the American Mathematical Society are available as special fonts SA
(msam10) and SB (msbm10). These two fonts are not mounted by default.

Using the option −mec (which loads the file ec.tmac) provides the EC and TC fonts. The design of the
EC family is very similar to that of the CM fonts; additionally, they giv e a much better coverage of
groff symbols. Note that ec.tmac must be called before any language-specific files; it doesn’t take care
of hcode values.

ENVIRONMENT
GROFF_FONT_PATH

A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devdvi/DESC

Device description file.

c:/progra˜1/groff/share/groff/1.20/font/devdvi/F
Font description file for font F .

c:/progra˜1/groff/share/groff/1.20/tmac/dvi.tmac
Macros for use with grodvi.

c:/progra˜1/groff/share/groff/1.20/tmac/ec.tmac
Macros to switch to EC fonts.

BUGS
Dvi files produced by grodvi use a different resolution (57816 units per inch) to those produced by
TEX. Incorrectly written drivers which assume the resolution used by TEX, rather than using the resolu-
tion specified in the dvi file will not work with grodvi.

When using the −d option with boxed tables, vertical and horizontal lines can sometimes protrude by
one pixel. This is a consequence of the way TEX requires that the heights and widths of rules be
rounded.

SEE ALSO
tfmtodit(1), groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7), groff_tmac(5)

Groff Version 1.20 5 January 2009 2

GROFF(1) GROFF(1)

GROFF

NAME
groff − front-end for the groff document formatting system

SYNOPSIS
[−abcegiklpstzCEGNRSUVXZ] [−dcs] [−Darg] [−f fam] [−Fdir] [−Idir] [−Karg] [−Larg]
[−mname] [−Mdir] [−nnum] [−olist] [−Parg] [−rcn] [−Tdev] [−wname] [−Wname]
[file . . .] −h | −−help −v | −−version [option . . .]

DESCRIPTION
This document describes the groff program, the main front-end for the groff document formatting sys-
tem. The groff program and macro suite is the implementation of a roff(7) system within the free soft-
ware collection GNU The groff system has all features of the classical roff , but adds many extensions.

The groff program allows to control the whole groff system by command line options. This is a great
simplification in comparison to the classical case (which uses pipes only).

OPTIONS
The command line is parsed according to the usual GNU convention. The whitespace between a com-
mand line option and its argument is optional. Options can be grouped behind a single ‘−’ (minus char-
acter). A filename of − (minus character) denotes the standard input.

As groff is a wrapper program for troff both programs share a set of options. But the groff program
has some additional, native options and gives a new meaning to some troff options. On the other hand,
not all troff options can be fed into groff.

Native groff Options
The following options either do not exist for troff or are differently interpreted by groff.

−D arg Set default input encoding used by preconv to arg. Implies −k.

−e Preprocess with eqn.

−g Preprocess with grn.

−G Preprocess with grap.

−h
−−help Print a help message.

−I dir This option may be used to specify a directory to search for files (both those on the command
line and those named in .psbb and .so requests, and \X’ps: import’ and \X’ps: file’ escapes).
The current directory is always searched first. This option may be specified more than once;
the directories are searched in the order specified. No directory search is performed for files
specified using an absolute path. This option implies the −s option.

−k Preprocess with preconv. This is run before any other preprocessor. Please refer to preconv’s
manual page for its behaviour if no −K (or −D) option is specified.

−K arg Set input encoding used by preconv to arg. Implies −k.

−l Send the output to a spooler program for printing. The command that should be used for this
is specified by the print command in the device description file, see groff_font(5). If this
command is not present, the output is piped into the lpr(1) program by default. See options
−L and −X.

−L arg Pass arg to the spooler program. Several arguments should be passed with a separate -L
option each. Note that groff does not prepend ‘-’ (a minus sign) to arg before passing it to the
spooler program.

−N Don’t allow newlines within eqn delimiters. This is the same as the −N option in eqn.

−p Preprocess with pic.

−P −option

−P −option −P arg

Pass −option or −option arg to the postprocessor. The option must be specified with the nec-
essary preceding minus sign(s) ‘-’ or ‘--’ because groff does not prepend any dashes
before passing it to the postprocessor. For example, to pass a title to the gxditview postpro-
cessor, the shell command

Groff Version 1.20 5 January 2009 1

GROFF(1) GROFF(1)

groff -X -P -title -P ’groff it’ foo

is equivalent to

groff -X -Z foo | gxditview -title ’groff it’ -

−R Preprocess with refer. No mechanism is provided for passing arguments to refer because
most refer options have equivalent language elements that can be specified within the docu-
ment. See refer(1) for more details.

−s Preprocess with soelim.

−S Safer mode. Pass the −S option to pic and disable the following troff requests: .open, .opena,
.pso, .sy, and .pi. For security reasons, safer mode is enabled by default.

−t Preprocess with tbl.

−T dev Set output device to dev. For this device, troff generates the intermediate output; see
groff_out(5). Then groff calls a postprocessor to convert troff’s intermediate output to its
final format. Real devices in groff are

dvi TeX DVI format (postprocessor is grodvi).

html
xhtml HTML and XHTML output (preprocessors are soelim and pre-grohtml,

postprocessor is post-grohtml).

lbp Canon CAPSL printers (LBP-4 and LBP-8 series laser printers; postproces-
sor is grolbp).

lj4 HP LaserJet4 compatible (or other PCL5 compatible) printers (postproces-
sor is grolj4).

ps PostScript output (postprocessor is grops).

For the following TTY output devices (postprocessor is always grotty), −T selects the output
encoding:

ascii 7bit ASCII.

cp1047 Latin-1 character set for EBCDIC hosts.

latin1 ISO 8859-1.

utf8 Unicode character set in UTF-8 encoding.

The following arguments select gxditview as the ‘postprocessor’ (it is rather a viewing pro-
gram):

X75 75 dpi resolution, 10 pt document base font.

X75-12 75 dpi resolution, 12 pt document base font.

X100 100 dpi resolution, 10 pt document base font.

X100-12
100 dpi resolution, 12 pt document base font.

The default device is ps.

−U Unsafe mode. Reverts to the (old) unsafe behaviour; see option −S.

−v
−−version

Output version information of groff and of all programs that are run by it; that is, the given
command line is parsed in the usual way, passing −v to all subprograms.

−V Output the pipeline that would be run by groff (as a wrapper program) on the standard output,
but do not execute it. If given more than once, the commands are both printed on the standard
error and run.

−X Use gxditview instead of using the usual postprocessor to (pre)view a document. The printing
spooler behavior as outlined with options −l and −L is carried over to gxditview(1) by
determining an argument for the −printCommand option of gxditview(1). This sets the
default Print action and the corresponding menu entry to that value. −X only produces good

Groff Version 1.20 5 January 2009 2

GROFF(1) GROFF(1)

results with −Tps, −TX75, −TX75-12, −TX100, and −TX100-12. The default resolution for
previewing −Tps output is 75 dpi; this can be changed by passing the −resolution option to
gxditview, for example

groff -X -P-resolution -P100 -man foo.1

−z Suppress output generated by troff. Only error messages are printed.

−Z Do not automatically postprocess groff intermediate output in the usual manner. This will
cause the troff output to appear on standard output, replacing the usual postprocessor output;
see groff_out(5).

Transparent Options
The following options are transparently handed over to the formatter program troff that is called by
groff subsequently. These options are described in more detail in troff(1).

−a ASCII approximation of output.

−b Backtrace on error or warning.

−c Disable color output. Please consult the grotty(1) man page for more details.

−C Enable compatibility mode.

−d cs

−d name=s

Define string.

−E Disable troff error messages.

−f fam Set default font family.

−F dir Set path for font DESC files.

−i Process standard input after the specified input files.

−m name

Include macro file name.tmac (or tmac.name); see also groff_tmac(5).

−M dir Path for macro files.

−n num

Number the first page num.

−o list Output only pages in list.

−r cn

−r name=n

Set number register.

−w name

Enable warning name.

−W name

disable warning name.

USING GROFF
The groff system implements the infrastructure of classical roff; see roff(7) for a survey on how a roff

system works in general. Due to the front-end programs available within the groff system, using groff

is much easier than classical roff . This section gives an overview of the parts that constitute the groff

system. It complements roff(7) with groff -specific features. This section can be regarded as a guide to
the documentation around the groff system.

Paper Size
The virtual paper size used by troff to format the input is controlled globally with the requests .po, .pl,
and .ll. See groff_tmac(5) for the ‘papersize’ macro package which provides a convenient interface.

The physical paper size, giving the actual dimensions of the paper sheets, is controlled by output
devices like grops with the command line options −p and −l. See groff_font(5) and the man pages of
the output devices for more details. groff uses the command line option −P to pass options to output
devices; for example, the following selects A4 paper in landscape orientation for the PS device:

Groff Version 1.20 5 January 2009 3

GROFF(1) GROFF(1)

groff -Tps -P-pa4 -P-l ...

Front-ends
The groff program is a wrapper around the troff(1) program. It allows to specify the preprocessors by
command line options and automatically runs the postprocessor that is appropriate for the selected
device. Doing so, the sometimes tedious piping mechanism of classical roff(7) can be avoided.

The grog(1) program can be used for guessing the correct groff command line to format a file.

The groffer(1) program is an allround-viewer for groff files and man pages.

Preprocessors
The groff preprocessors are reimplementations of the classical preprocessors with moderate extensions.
The standard preprocessors distributed with the groff package are

eqn(1) for mathematical formulæ,

grn(1) for including gremlin(1) pictures,

pic(1) for drawing diagrams,

chem(1)
for chemical structure diagrams,

refer(1)
for bibliographic references,

soelim(1)
for including macro files from standard locations,

and

tbl(1) for tables.

A new preprocessor not available in classical troff is preconv(1) which converts various input encod-
ings to something groff can understand. It is always run first before any other preprocessor.

Besides these, there are some internal preprocessors that are automatically run with some devices.
These aren’t visible to the user.

Macro Packages
Macro packages can be included by option −m. The groff system implements and extends all classical
macro packages in a compatible way and adds some packages of its own. Actually, the following
macro packages come with groff :

man The traditional man page format; see groff_man(7). It can be specified on the command line
as −man or −m man.

mandoc
The general package for man pages; it automatically recognizes whether the documents uses
the man or the mdoc format and branches to the corresponding macro package. It can be spec-
ified on the command line as −mandoc or −m mandoc.

mdoc The BSD-style man page format; see groff_mdoc(7). It can be specified on the command line
as −mdoc or −m mdoc.

me The classical me document format; see groff_me(7). It can be specified on the command line
as −me or −m me.

mm The classical mm document format; see groff_mm(7). It can be specified on the command
line as −mm or −m mm.

ms The classical ms document format; see groff_ms(7). It can be specified on the command line
as −ms or −m ms.

www HTML-like macros for inclusion in arbitrary groff documents; see groff_www(7).

Details on the naming of macro files and their placement can be found in groff_tmac(5); this man page
also documents some other, minor auxiliary macro packages not mentioned here.

Programming Language
General concepts common to all roff programming languages are described in roff(7).

Groff Version 1.20 5 January 2009 4

GROFF(1) GROFF(1)

The groff extensions to the classical troff language are documented in groff_diff(7).

The groff language as a whole is described in the (still incomplete) groff info file; a short (but complete)
reference can be found in groff(7).

Formatters
The central roff formatter within the groff system is troff(1). It provides the features of both the classi-
cal troff and nroff , as well as the groff extensions. The command line option −C switches troff into
compatibility mode which tries to emulate classical roff as much as possible.

There is a shell script nroff(1) that emulates the behavior of classical nroff. It tries to automatically
select the proper output encoding, according to the current locale.

The formatter program generates intermediate output; see groff_out(7).

Devices
In roff , the output targets are called devices. A device can be a piece of hardware, e.g., a printer, or a
software file format. A device is specified by the option −T. The groff devices are as follows.

ascii Te xt output using the ascii(7) character set.

cp1047 Te xt output using the EBCDIC code page IBM cp1047 (e.g., OS/390 Unix).

dvi TeX DVI format.

html HTML output.

latin1 Te xt output using the ISO Latin-1 (ISO 8859-1) character set; see iso_8859_1(7).

lbp Output for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers).

lj4 HP LaserJet4-compatible (or other PCL5-compatible) printers.

ps PostScript output; suitable for printers and previewers like gv(1).

utf8 Te xt output using the Unicode (ISO 10646) character set with UTF-8 encoding; see uni-
code(7).

xhtml XHTML output.

X75 75dpi X Window System output suitable for the previewers xditview(1x) and gxditview(1).
A variant for a 12 pt document base font is X75-12.

X100 100dpi X Window System output suitable for the previewers xditview(1x) and gxditview(1).
A variant for a 12 pt document base font is X100-12.

The postprocessor to be used for a device is specified by the postpro command in the device descrip-
tion file; see groff_font(5). This can be overridden with the -X option.

The default device is ps.

Postprocessors
groff provides 3 hardware postprocessors:

grolbp(1)
for some Canon printers,

grolj4(1)
for printers compatible to the HP LaserJet 4 and PCL5,

grotty(1)
for text output using various encodings, e.g., on text-oriented terminals or line-printers.

Today, most printing or drawing hardware is handled by the operating system, by device drivers, or by
software interfaces, usually accepting PostScript. Consequently, there isn’t an urgent need for more
hardware device postprocessors.

The groff software devices for conversion into other document file formats are

grodvi(1)
for the DVI format,

grohtml(1)
for HTML and XHTML formats,

Groff Version 1.20 5 January 2009 5

GROFF(1) GROFF(1)

grops(1)
for PostScript.

Combined with the many existing free conversion tools this should be sufficient to convert a troff docu-
ment into virtually any existing data format.

Utilities
The following utility programs around groff are available.

addftinfo(1)
Add information to troff font description files for use with groff .

afmtodit(1)
Create font description files for PostScript device.

eqn2graph(1)
Convert an eqn image into a cropped image.

gdiffmk(1)
Mark differences between groff , nroff , or troff files.

grap2graph(1)
Convert a grap diagram into a cropped bitmap image.

groffer(1)
General viewer program for groff files and man pages.

gxditview(1)
The groff X viewer, the GNU version of xditview.

hpftodit(1)
Create font description files for lj4 device.

indxbib(1)
Make inv erted index for bibliographic databases.

lkbib(1)
Search bibliographic databases.

lookbib(1)
Interactively search bibliographic databases.

pdfroff(1)
Create PDF documents using groff.

pfbtops(1)
Translate a PostScript font in .pfb format to ASCII.

pic2graph(1)
Convert a pic diagram into a cropped image.

tfmtodit(1)
Create font description files for TeX DVI device.

xditview(1x)
roff viewer distributed with X window.

xtotroff(1)
Convert X font metrics into GNU troff font metrics.

ENVIRONMENT
Normally, the path separator in the following environment variables is the colon; this may vary depend-
ing on the operating system. For example, DOS and Windows use a semicolon instead.

GROFF_BIN_PATH
This search path, followed by $PATH, is used for commands that are executed by groff. If it is
not set then the directory where the groff binaries were installed is prepended to PATH.

GROFF_COMMAND_PREFIX
When there is a need to run different roff implementations at the same time groff provides the

Groff Version 1.20 5 January 2009 6

GROFF(1) GROFF(1)

facility to prepend a prefix to most of its programs that could provoke name clashings at run
time (default is to have none). Historically, this prefix was the character g, but it can be any-
thing. For example, gtroff stood for groff ’s troff, gtbl for the groff version of tbl. By setting
GROFF_COMMAND_PREFIX to different values, the different roff installations can be
addressed. More exactly, if it is set to prefix xxx then groff as a wrapper program internally
calls xxxtroff instead of troff. This also applies to the preprocessors eqn, grn, pic, refer, tbl,
soelim, and to the utilities indxbib and lookbib. This feature does not apply to any programs
different from the ones above (most notably groff itself) since they are unique to the groff

package.

GROFF_ENCODING
The value of this environment value is passed to the preconv preprocessor to select the encod-
ing of input files. Setting this option implies groff’s command line option −k (this is, groff
actually always calls preconv). If set without a value, groff calls preconv without arguments.
An explicit −K command line option overrides the value of GROFF_ENCODING. See pre-
conv(1) for details.

GROFF_FONT_PATH
A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

GROFF_TMAC_PATH
A list of directories in which to search for macro files in addition to the default directories.
See troff(1) and groff_tmac(5) for more details.

GROFF_TMPDIR
The directory in which temporary files are created. If this is not set but the environment vari-
able TMPDIR instead, temporary files are created in the directory $TMPDIR. On MS-DOS
and Windows 32 platforms, the environment variables TMP and TEMP (in that order) are
searched also, after GROFF_TMPDIR and TMPDIR. Otherwise, temporary files are created in
/tmp. The refer(1), groffer(1), grohtml(1), and grops(1) commands use temporary files.

GROFF_TYPESETTER
Preset the default device. If this is not set the ps device is used as default. This device name
is overwritten by the option −T.

FILES
There are some directories in which groff installs all of its data files. Due to different installation habits
on different operating systems, their locations are not absolutely fixed, but their function is clearly
defined and coincides on all systems.

groff Macro Directory
This contains all information related to macro packages. Note that more than a single directory is
searched for those files as documented in groff_tmac(5). For the groff installation corresponding to
this document, it is located at c:/progra˜1/groff/share/groff/1.20/tmac. The following files contained in
the groff macro directory have a special meaning:

troffrc Initialization file for troff . This is interpreted by troff before reading the macro sets and any
input.

troffrc-end
Final startup file for troff . It is parsed after all macro sets have been read.

name.tmac
tmac.name

Macro file for macro package name.

groff Font Directory
This contains all information related to output devices. Note that more than a single directory is
searched for those files; see troff(1). For the groff installation corresponding to this document, it is
located at c:/progra˜1/groff/share/groff/1.20/font. The following files contained in the groff font direc-

tory have a special meaning:

devname/DESC
Device description file for device name, see groff_font(5).

Groff Version 1.20 5 January 2009 7

GROFF(1) GROFF(1)

devname/F
Font file for font F of device name.

EXAMPLES
The following example illustrates the power of the groff program as a wrapper around troff.

To process a roff file using the preprocessors tbl and pic and the me macro set, classical troff had to be
called by

pic foo.me | tbl | troff -me -Tlatin1 | grotty

Using groff, this pipe can be shortened to the equivalent command

groff -p -t -me -T latin1 foo.me

An even easier way to call this is to use grog(1) to guess the preprocessor and macro options and
execute the generated command (by using backquotes to specify shell command substitution)

`grog -Tlatin1 foo.me`

The simplest way is to view the contents in an automated way by calling

groffer foo.me

BUGS
On EBCDIC hosts (e.g., OS/390 Unix), output devices ascii and latin1 aren’t available. Similarly,
output for EBCDIC code page cp1047 is not available on ASCII based operating systems.

Report bugs to the groff maling list Include a complete, self-contained example that allows the bug to
be reproduced, and say which version of groff you are using.

AV AILABILITY
Information on how to get groff and related information is available at the groff GNU website The most
recent released version of groff is available at the groff dev elopment site

Three groff mailing lists are available:

for reporting bugs

for general discussion of groff ,

the groff commit list a read-only list showing logs of commitments to the CVS repository.

Details on CVS access and much more can be found in the file README at the top directory of the
groff source package.

There is a free implementation of the grap preprocessor, written by Ted Faber The actual version can
be found at the grap website This is the only grap version supported by groff .

AUTHORS
Copyright © 1989, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License)
version 1.3 or later. You should have received a copy of the FDL on your system, it is also available
on-line at the GNU copyleft site

This document is based on the original groff man page written by James Clark It was rewritten,
enhanced, and put under the FDL license by Bernd Warken. It is maintained by Werner Lemberg

groff is a GNU free software project. All parts of the groff package are protected by GNU copyleft
licenses. The software files are distributed under the terms of the GNU General Public
License (GPL), while the documentation files mostly use the GNU Free Documentation
License (FDL).

SEE ALSO
The groff info file contains all information on the groff system within a single document, providing
many examples and background information. See info(1) on how to read it.

Due to its complex structure, the groff system has many man pages. They can be read with man(1) or
groffer(1).

Introduction, history and further readings:
roff(7).

Groff Version 1.20 5 January 2009 8

GROFF(1) GROFF(1)

Viewer for groff files:
groffer(1), gxditview(1), xditview(1x).

Wrapper programs for formatters:
groff(1), grog(1).

Roff preprocessors:
eqn(1), grn(1), pic(1), chem(1), preconv(1), refer(1), soelim(1), tbl(1), grap(1).

Roff language with the groff extensions:
groff(7), groff_char(7), groff_diff(7), groff_font(5).

Roff formatter programs:
nroff(1), troff(1), ditroff(7).

The intermediate output language:
groff_out(7).

Postprocessors for the output devices:
grodvi(1), grohtml(1), grolbp(1), grolj4(1), lj4_font(5), grops(1), grotty(1).

Groff macro packages and macro-specific utilities:
groff_tmac(5), groff_man(7), groff_mdoc(7), groff_me(7), groff_mm(7), groff_mmse(7),
groff_mom(7), groff_ms(7), groff_www(7), groff_trace(7), mmroff(7).

The following utilities are available:
addftinfo(1), afmtodit(1), eqn2graph(1), gdiffmk(1), grap2graph(1), groffer(1),
gxditview(1), hpftodit(1), indxbib(1), lkbib(1), lookbib(1), pdfroff(1), pfbtops(1),
pic2graph(1), tfmtodit(1), xtotroff(1).

Groff Version 1.20 5 January 2009 9

GROFFER(1) GROFFER(1)

GROFFER

NAME
groffer − display groff files and man pages on X and tty

SYNOPSIS
[option. . .] [--] [filespec. . .] -h|--help -v|--version

DESCRIPTION
The groffer program is the easiest way to use groff(1). It can display arbitrary documents written in
the groff language, see groff(7), or other roff languages, see roff(7), that are compatible to the original
troff language. It finds and runs all necessary groff preprocessors, such as chem.

The groffer program also includes many of the features for finding and displaying the Unix manual
pages (man pages), such that it can be used as a replacement for a man(1) program. Moreover, com-
pressed files that can be handled by gzip(1) or bzip2(1) are decompressed on-the-fly.

The normal usage is quite simple by supplying a file name or name of a man page without further op-
tions. But the option handling has many possibilities for creating special behaviors. This can be done
either in configuration files, with the shell environment variable $GROFFER_OPT, or on the command
line.

The output can be generated and viewed in several different ways available for groff . This includes the
groff native X Window viewer gxditview(1), each Postcript, pdf , or dvi display program, a web
browser by generating html in www mode, or sev eral text modes in text terminals.

Most of the options that must be named when running groff directly are determined automatically for
groffer, due to the internal usage of the grog(1) program. But all parts can also be controlled manually
by arguments.

Several file names can be specified on the command line arguments. They are transformed into a single
document in the normal way of groff.

Option handling is done in GNU style. Options and file names can be mixed freely. The option ‘−−’
closes the option handling, all following arguments are treated as file names. Long options can be ab-
breviated in several ways.

OPTION OVERVIEW
breaking options

[-h˜| --help] [-v˜| --version]

groffer mode options

[--auto] [--default] [--default−modesmode1,mode2,. . .] [--dvi] [--dvi−viewerprog]
[--groff] [--html] [--html−viewer prog] [--modedisplay_mode] [--pdf] [--pdf−viewer-
prog] [--ps] [--ps−viewer prog] [--source] [--text] [--to−stdout] [--tty] [--tty−view-
erprog] [--www] [--www−viewerprog] [--x--X] [--x−viewer--X−viewer]

options related to groff

[-T˜| --devicedevice] [-Z˜| --intermediate−output˜| --ditroff]

All further groff short options are accepted.

options for man pages

[--apropos] [--apropos−data] [--apropos−devel] [--apropos−progs] [--man] [--no-
man] [--no-special] [--whatis]

long options taken over from GNU man

[--all] [--ascii] [--ditroff] [--extensionsuffix] [--localelanguage] [--local-file] [--loca-
tion˜| --where] [--manpathdir1:dir2:. . .] [--no-location] [--pager program] [--section-
ssec1:sec2:. . .] [--systemssys1,sys2,. . .] [--troff-devicedevice]

Further long options of GNU man are accepted as well.

X Window Toolkit options

[--bd˜| --bordercolor pixels] [--bg˜| --backgroundcolor] [--bw˜| --borderwidth pixels]
[--displayX-display] [--fg˜| --foregroundcolor] [--fn˜| --ft˜| --font font_name] [--geome-
trysize_pos] [--resolutionvalue] [--rv] [--titlestring] [--xrmX-resource]

Groff Version 1.20 5 January 2009 1

GROFFER(1) GROFFER(1)

options for development

[--debug] [--debug−filenames] [--debug−grog] [--debug−keep] [--debug−params]
[--debug−tmpdir] [--do−nothing] [--printtext] [-V]

filespec arguments

The filespec parameters are all arguments that are neither an option nor an option argument.
They usually mean a file name or a man page searching scheme.

In the following, the term section_extension is used. It means a word that consists of a man

section that is optionally followed by an extension. The name of a man section is a single
character from [1-9on], the extension is some word. The extension is mostly lacking.

No filespec parameters means standard input.

- stands for standard input (can occur several times).

filename the path name of an existing file.

man:name(section_extension)
man:name.section_extension

name(section_extension)
name.section_extension

section_extension name

search the man page name in the section with optional extension sec-

tion_extension.

man:name man page in the lowest man section that has name.

name if name is not an existing file search for the man page name in the
lowest man section.

OPTION DETAILS
The groffer program can usually be run with very few options. But for special purposes, it supports
many options. These can be classified in 5 option classes.

All short options of groffer are compatible with the short options of groff(1). All long options of
groffer are compatible with the long options of man(1).

Arguments for long option names can be abbreviated in several ways. First, the argument is checked
whether it can be prolonged as is. Furthermore, each minus sign - is considered as a starting point for a
new abbreviation. This leads to a set of multiple abbreviations for a single argument. For example,
--de−n−f can be used as an abbreviation for --debug−not−func, but --de−n works as well. If the ab-
breviation of the argument leads to several resulting options an error is raised.

These abbreviations are only allowed in the environment variable $GROFFER_OPT, but not in the con-
figuration files. In configuration, all long options must be exact.

groffer breaking Options
As soon as one of these options is found on the command line it is executed, printed to standard output,
and the running groffer is terminated thereafter. All other arguments are ignored.

[-h|--help]
Print a helping information with a short explanation of option sto standard output.

[-v--version]
Print version information to standard output.

groffer Mode Options
The display mode and the viewer programs are determined by these options. If none of these mode and
viewer options is specified groffer tries to find a suitable display mode automatically. The default
modes are mode pdf , mode ps, mode html, mode x, and mode dvi in X Window with different viewers
and mode tty with device latin1 under less on a terminal; other modes are tested if the programs for the
main default mode do not exist.

In X Window, many programs create their own window when called. groffer can run these viewers as
an independent program in the background. As this does not work in text mode on a terminal (tty)
there must be a way to know which viewers are X Window graphical programs. The groffer script
has a small set of information on some viewer names. If a viewer argument of the command−line

Groff Version 1.20 5 January 2009 2

GROFFER(1) GROFFER(1)

chooses an element that is kept as X Window program in this list it is treated as a viewer that can run
in the background. All other, unknown viewer calls are not run in the background.

For each mode, you are free to choose whatever viewer you want. That need not be some graphical
viewer suitable for this mode. There is a chance to view the output source; for example, the combina-
tion of the options --mode=ps and --ps−viewer=less shows the content of the Postscript output, the
source code, with the pager less.

--auto Equivalent to --mode=auto.

--default
Reset all configuration from previously processed command line options to the default values.
This is useful to wipe out all former options of the configuration, in $GROFFER_OPT, and
restart option processing using only the rest of the command line.

--default−modes mode1,mode2,. . .
Set the sequence of modes for auto mode to the comma separated list given in the argument.
See --mode for details on modes. Display in the default manner; actually, this means to try
the modes x, ps, and tty in this sequence.

--dvi Equivalent to --mode=dvi.

--dvi−viewer prog
Choose a viewer program for dvi mode. This can be a file name or a program to be searched
in $PATH. Known X Window dvi viewers include xdvi(1) and dvilx(1) In each case, argu-
ments can be provided additionally.

--groff Equivalent to --mode=groff.

--html Equivalent to --mode=html.

--html−viewer
Choose a web browser program for viewing in html mode. It can be the path name of an ex-
ecutable file or a program in $PATH. In each case, arguments can be provided additionally.

--modevalue

Set the display mode. The following mode values are recognized:

auto Select the automatic determination of the display mode. The sequence of modes that
are tried can be set with the --default−modes option. Useful for restoring the
default mode when a different mode was specified before.

dvi Display formatted input in a dvi viewer program. By default, the formatted input is
displayed with the xdvi(1) program. --dvi.

groff After the file determination, switch groffer to process the input like groff(1) would
do. This disables the groffer viewing features.

html Translate the input into html format and display the result in a web browser program.
By default, the existence of a sequence of standard web browsers is tested, starting
with konqueror(1) and mozilla(1). The text html viewer is lynx(1).

pdf Display formatted input in a PDF (Portable Document Format) viewer program. By
default, the input is formatted by groff using the Postscript device, then it is trans-
formed into the PDF file format using gs(1), or ps2pdf(1). If that’s not possible, the
Postscript mode (ps) is used instead. Finally it is displayed using different viewer
programs. pdf has a big advantage because the text is displayed graphically and is
searchable as well.

ps Display formatted input in a Postscript viewer program. By default, the formatted in-
put is displayed in one of many viewer programs.

text Format in a groff text mode and write the result to standard output without a pager or
viewer program. The text device, latin1 by default, can be chosen with option -T.

tty Format in a groff text mode and write the result to standard output using a text pager
program, even when in X Window.

www Equivalent to --mode=html.

Groff Version 1.20 5 January 2009 3

GROFFER(1) GROFFER(1)

x Display the formatted input in a native roff viewer. By default, the formatted input is
displayed with the gxditview(1) program being distributed together with groff. But
the standard X Window tool xditview(1) can also be chosen with the option
--x−viewer . The default resolution is 75 dpi, but 100 dpi are also possible. The de-
fault groff device for the resolution of 75 dpi is X75−12, for 100 dpi it is X100. The
corresponding groff intermediate output for the actual device is generated and the re-
sult is displayed. For a resolution of 100 dpi, the default width of the geometry of
the display program is chosen to 850 dpi.

X Equivalent to --mode=x.

The following modes do not use the groffer viewing features. They are only interesting for ad-
vanced applications.

groff Generate device output with plain groff without using the special viewing features of
groffer. If no device was specified by option -T the groff default ps is assumed.

source

Output the roff source code of the input files without further processing.

--pdf Equivalent to --mode=pdf.

--pdf−viewer prog
Choose a viewer program for pdf mode. This can be a file name or a program to be searched
in $PATH; arguments can be provided additionally.

--ps Equivalent to --mode=ps.

--ps−viewer prog
Choose a viewer program for ps mode. This can be a file name or a program to be searched in
$PATH. Common Postscript viewers inlude gv(1), ghostview(1), and gs(1), In each case, argu-
ments can be provided additionally.

--source
Equivalent --mode=source.

--text Equivalent to --mode=text.

--to−stdout
The file for the chosen mode is generated and its content is printed to standard output. It will
not be displayed in graphical mode.

--tty Equivalent to --mode=tty.

--tty−viewer prog
Choose a text pager for mode tty. The standard pager is less(1). This option is eqivalent to
man option --pager=prog. The option argument can be a file name or a program to be
searched in $PATH; arguments can be provided additionally.

--www Equivalent to --mode=html.

--www−viewer prog
Equivalent to --html−viewer .

--X˜| --x
Equivalent to --mode=x.

--X−viewer -- x−viewer prog
Choose a viewer program for x mode. Suitable viewer programs are gxditview(1) which is the
default and xditview(1). The argument can be any executable file or a program in $PATH; ar-
guments can be provided additionally.

-- Signals the end of option processing; all remaining arguments are interpreted as filespec pa-
rameters.

Besides these, groffer accepts all short options that are valid for the groff(1) program. All non-groffer
options are sent unmodified via grog to groff. So postprocessors, macro packages, compatibility with
classical troff , and much more can be manually specified.

Groff Version 1.20 5 January 2009 4

GROFFER(1) GROFFER(1)

Options related to groff
All short options of groffer are compatible with the short options of groff(1). The following of groff
options have either an additional special meaning within groffer or make sense for normal usage.

Because of the special outputting behavior of the groff option -Z groffer was designed to be switched
into groff mode ; the groffer viewing features are disabled there. The other groff options do not switch
the mode, but allow to customize the formatting process.

--a This generates an ascii approximation of output in the text modes. That could be important
when the text pager has problems with control sequences in tty mode.

--m file Add file as a groff macro file. This is useful in case it cannot be recognized automatically.

--Popt_or_arg

Send the argument opt_or_arg as an option or option argument to the actual groff postproces-
sor.

--T devname ˜| --device devname

This option determines groff’s output device. The most important devices are the text output
devices for referring to the different character sets, such as ascii, utf8, latin1, and others.
Each of these arguments switches groffer into a text mode using this device, to mode tty if the
actual mode is not a text mode. The following devname arguments are mapped to the corre-
sponding groffer --mode=devname option: dvi, html, and ps. All X∗ arguments are mapped
to mode x. Each other devname argument switches to mode groff using this device.

--X is equivalent to groff −X. It displays the groff intermediate output with gxditview. As the
quality is relatively bad this option is deprecated; use --X instead because the x mode uses an
X∗ device for a better display.

-Z˜| --intermediate-output˜| --ditroff
Switch into groff mode and format the input with the groff intermediate output without post-
processing; see groff_out(5). This is equivalent to option --ditroff of man, which can be used
as well.

All other groff options are supported by groffer, but they are just transparently transferred to groff
without any intervention. The options that are not explicitly handled by groffer are transparently
passed to groff. Therefore these transparent options are not documented here, but in groff(1). Due to
the automatism in groffer, none of these groff options should be needed, except for advanced usage.

Options for man pages
--apropos

Start the apropos(1) command or facility of man(1) for searching the filespec arguments with-
in all man page descriptions. Each filespec argument is taken for search as it is; section spe-
cific parts are not handled, such that 7 groff searches for the two arguments 7 and groff, with a
large result; for the filespec groff.7 nothing will be found. The language locale is handled on-
ly when the called programs do support this; the GNU apropos and man −k do not. The dis-
play differs from the apropos program by the following concepts:

• Construct a groff frame similar to a man page to the output of apropos,

• each filespec argument is searched on its own.

• The restriction by --sections is handled as well,

• wildcard characters are allowed and handled without a further option.

--apropos−data
Show only the apropos descriptions for data documents, these are the man(7) sections 4, 5,
and 7 . Direct section declarations are ignored, wildcards are accepted.

--apropos−devel
Show only the apropos descriptions for development documents, these are the man(7) sec-

tions 2, 3, and 9. Direct section declarations are ignored, wildcards are accepted.

--apropos−progs
Show only the apropos descriptions for documents on programs, these are the man(7) sec-

tions 1, 6, and 8. Direct section declarations are ignored, wildcards are accepted.

Groff Version 1.20 5 January 2009 5

GROFFER(1) GROFFER(1)

--whatis
For each filespec argument search all man pages and display their description — or say that it
is not a man page. This is written from anew, so it differs from man’s whatis output by the
following concepts

• each retrieved file name is added,

• local files are handled as well,

• the language and system locale is supported,

• the display is framed by a groff output format similar to a man page,

• wildcard characters are allowed without a further option.

The following options were added to groffer for choosing whether the file name arguments are inter-
preted as names for local files or as a search pattern for man pages. The default is looking up for local
files.

--man Check the non-option command line arguments (filespecs) first on being man pages, then
whether they represent an existing file. By default, a filespec is first tested whether it is an ex-
isting file.

--no-man˜| --local-file
Do not check for man pages. --local-file is the corresponding man option.

--no-special
Disable former calls of --all , --apropos∗ , and --whatis .

Long options taken over from GNU man
The long options of groffer were synchronized with the long options of GNU man. All long options of
GNU man are recognized, but not all of these options are important to groffer, so most of them are just
ignored. These ignored man options are --catman , --troff , and --update .

In the following, the man options that have a special meaning for groffer are documented.

If your system has GNU man installed the full set of long and short options of the GNU man program
can be passed via the environment variable $MANOPT; see man(1).

--all In searching man pages, retrieve all suitable documents instead of only one.

-7--ascii
In text modes, display ASCII translation of special characters for critical environment. This is
equivalent to groff -mtty_char; see groff_tmac(5).

--ditroff
Produce groff intermediate output. This is equivalent to groffer -Z .

--extensionsuffix

Restrict man page search to file names that have suffix appended to their section element. For
example, in the file name /usr/share/man/man3/terminfo.3ncurses.gz the man page extension
is ncurses.

--localelanguage

Set the language for man pages. This has the same effect, but overwrites $LANG

--location
Print the location of the retrieved files to standard error.

--no-location
Do not display the location of retrieved files; this resets a former call to --location . This was
added by groffer.

--manpath’dir1:dir2:. . .’

Use the specified search path for retrieving man pages instead of the program defaults. If the
argument is set to the empty string "" the search for man page is disabled.

--pager
Set the pager program in tty mode; default is less. This is equivalent to --tty−viewer .

Groff Version 1.20 5 January 2009 6

GROFFER(1) GROFFER(1)

--sections’sec1:sec2:. . .’

Restrict searching for man pages to the given sections, a colon-separated list.

--systems’sys1,sys2,. . .’

Search for man pages for the given operating systems; the argument systems is a comma-sepa-
rated list.

--where
Eqivalent to --location .

X Window Toolkit Options
The following long options were adapted from the corresponding X Window Toolkit options.
groffer will pass them to the actual viewer program if it is an X Window program. Otherwise these
options are ignored.

Unfortunately these options use the old style of a single minus for long options. For groffer that was
changed to the standard with using a double minus for long options, for example, groffer uses the op-
tion --font for the X Window option -font .

See X(7) and the documentation on the X Window Toolkit options for more details on these op-
tions and their arguments.

--backgroundcolor

Set the background color of the viewer window.

--bd pixels

This is equivalent to --bordercolor .

--bgcolor

This is equivalent to --background .

--bw pixels
This is equivalent to --borderwidth .

--bordercolor pixels

Specifies the color of the border surrounding the viewer window.

--borderwidthpixels

Specifies the width in pixels of the border surrounding the viewer window.

--displayX-display

Set the X Window display on which the viewer program shall be started, see the X Window
documentation for the syntax of the argument.

--foregroundcolor

Set the foreground color of the viewer window.

--fgcolor

This is equivalent to -foreground .

--fn font_name
This is equivalent to --font .

--font font_name

Set the font used by the viewer window. The argument is an X Window font name.

--ft font_name

This is equivalent to --font .

--geometrysize_pos

Set the geometry of the display window, that means its size and its starting position. See X(7)
for the syntax of the argument.

--resolutionvalue

Set X Window resolution in dpi (dots per inch) in some viewer programs. The only support-
ed dpi values are 75 and 100. Actually, the default resolution for groffer is set to 75 dpi. The
resolution also sets the default device in mode x.

--rv Reverse foreground and background color of the viewer window.

Groff Version 1.20 5 January 2009 7

GROFFER(1) GROFFER(1)

--title’some text’

Set the title for the viewer window.

--xrm’resource’

Set X Window resource.

Options for Development
--debug

Enable all debugging options --debug−type . The temporary files are kept and not deleted, the
grog output is printed, the name of the temporary directory is printed, the displayed file names
are printed, and the parameters are printed.

--debug−filenames
Print the names of the files and man pages that are displayed by groffer.

--debug−grog
Print the output of all grog commands.

--debug−keep
Enable two debugging informations. Print the name of the temporary directory and keep the
temporary files, do not delete them during the run of groffer.

--debug−params
Print the parameters, as obtained from the configuration files, from GROFFER_OPT, and the
command line arguments.

--debug−tmpdir
Print the name of the temporary directory.

--do-nothing
This is like --version , but without the output; no viewer is started. This makes only sense in
development.

--print=text

Just print the argument to standard error. This is good for parameter check.

-V This is an advanced option for debugging only. Instead of displaying the formatted input, a lot
of groffer specific information is printed to standard output:

• the output file name in the temporary directory,

• the display mode of the actual groffer run,

• the display program for viewing the output with its arguments,

• the active parameters from the config files, the arguments in $GROFFER_OPT, and the ar-
guments of the command line,

• the pipeline that would be run by the groff program, but without executing it.

Other useful debugging options are the groff option -Z and --mode=groff.

Filespec Arguments
A filespec parameter is an argument that is not an option or option argument. In groffer, filespec pa-
rameters are a file name or a template for searching man pages. These input sources are collected and
composed into a single output file such as groff does.

The strange POSIX behavior to regard all arguments behind the first non-option argument as filespec

arguments is ignored. The GNU behavior to recognize options even when mixed with filespec argu-
ments is used througout. But, as usual, the double minus argument -- ends the option handling and in-
terprets all following arguments as filespec arguments; so the POSIX behavior can be easily adopted.

The options --apropos∗ have a special handling of filespec arguments. Each argument is taken as a
search scheme of its own. Also a regexp (regular expression) can be used in the filespec. For example,
groffer --apropos ’ˆgro.f$’ searches groff in the man page name, while groffer --apropos groff
searches groff somewhere in the name or description of the man pages.

All other parts of groffer, such as the normal display or the output with --whatis have a different
scheme for filespecs. No regular expressions are used for the arguments. The filespec arguments are
handled by the following scheme.

Groff Version 1.20 5 January 2009 8

GROFFER(1) GROFFER(1)

It is necessary to know that on each system the man pages are sorted according to their content into
several sections. The classical man sections have a single-character name, either a digit from 1 to 9 or
one of the characters n or o.

This can optionally be followed by a string, the so-called extension. The extension allows to store sev-
eral man pages with the same name in the same section. But the extension is only rarely used, usually
it is omitted. Then the extensions are searched automatically by alphabet.

In the following, we use the name section_extension for a word that consists of a single character sec-

tion name or a section character that is followed by an extension. Each filespec parameter can have one
of the following forms in decreasing sequence.

• No filespec parameters means that groffer waits for standard input. The minus option - always
stands for standard input; it can occur several times. If you want to look up a man page called -
use the argument man:−.

• Next a filespec is tested whether it is the path name of an existing file. Otherwise it is assumed to
be a searching pattern for a man page.

• man:name(section_extension), man:name.section_extension, name(section_extension), or
name.section_extension search the man page name in man section and possibly extension of
section_extension.

• Now man:name searches for a man page in the lowest man section that has a document called
name.

• section_extension name is a pattern of 2 arguments that originates from a strange argument pars-
ing of the man program. Again, this searches the man page name with section_extension, a com-
bination of a section character optionally followed by an extension.

• We are left with the argument name which is not an existing file. So this searches for the
man page called name in the lowest man section that has a document for this name.

Several file name arguments can be supplied. They are mixed by groff into a single document. Note
that the set of option arguments must fit to all of these file arguments. So they should have at least the
same style of the groff language.

OUTPUT MODES
By default, the groffer program collects all input into a single file, formats it with the groff program
for a certain device, and then chooses a suitable viewer program. The device and viewer process in
groffer is called a mode. The mode and viewer of a running groffer program is selected automatically,
but the user can also choose it with options. The modes are selected by option the arguments of
--mode=anymode. Additionally, each of this argument can be specified as an option of its own, such as
anymode. Most of these modes have a viewer program, which can be chosen by an option that is con-
structed like --anymode−viewer.

Several different modes are offered, graphical modes for X Window, text modes, and some direct
groff modes for debugging and development.

By default, groffer first tries whether x mode is possible, then ps mode, and finally tty mode. This
mode testing sequence for auto mode can be changed by specifying a comma separated list of modes
with the option --default−modes.

The searching for man pages and the decompression of the input are active in every mode.

Graphical Display Modes
The graphical display modes work mostly in the X Window environment (or similar implementations
within other windowing environments). The environment variable $DISPLAY and the option --display
are used for specifying the X Window display to be used. If this environment variable is empty
groffer assumes that no X Window is running and changes to a text mode. You can change this auto-
matic behavior by the option --default−modes.

Known viewers for the graphical display modes and their standard X Window viewer progams are

• in a PDF viewer (pdf mode),

• in a web browser (html or www mode).

Groff Version 1.20 5 January 2009 9

GROFFER(1) GROFFER(1)

• in a Postscript viewer (ps mode),

• X Window roff viewers such as gxditview(1) or xditview(1) (in x mode),

• in a dvi viewer program (dvi mode),

The pdf mode has a major advantage — it is the only graphical diplay mode that allows to search for
text within the viewer; this can be a really important feature. Unfortunately, it takes some time to trans-
form the input into the PDF format, so it was not chosen as the major mode.

These graphical viewers can be customized by options of the X Window Toolkit. But the groffer
options use a leading double minus instead of the single minus used by the X Window Toolkit.

Text modes
There are two modes for text output, mode text for plain output without a pager and mode tty for a text
output on a text terminal using some pager program.

If the variable $DISPLAY is not set or empty, groffer assumes that it should use tty mode.

In the actual implementation, the groff output device latin1 is chosen for text modes. This can be
changed by specifying option -T or --device.

The pager to be used can be specified by one of the options --pager and --tty−viewer, or by the envi-
ronment variable $PAGER. If all of this is not used the less(1) program with the option -r for correctly
displaying control sequences is used as the default pager.

Special Modes for Debugging and Development
These modes use the groffer file determination and decompression. This is combined into a single in-
put file that is fed directly into groff with different strategy without the groffer viewing facilities.
These modes are regarded as advanced, they are useful for debugging and development purposes.

The source mode with option --source just displays the decompressed input.

Otion --to−stdout does not display in a graphical mode. It just generates the file for the chosen mode
and then prints its content to standard output.

The groff mode passes the input to groff using only some suitable options provided to groffer. This en-
ables the user to save the generated output into a file or pipe it into another program.

In groff mode, the option -Z disables post-processing, thus producing the groff intermediate output. In
this mode, the input is formatted, but not postprocessed; see groff_out(5) for details.

All groff short options are supported by groffer.

MAN PAGE SEARCHING
The default behavior of groffer is to first test whether a file parameter represents a local file; if it is not
an existing file name, it is assumed to represent the name of a man page. The following options can be
used to determine whether the arguments should be handled as file name or man page arguments.

--man forces to interpret all file parameters as filespecs for searching man pages.

--no−man
--local−file

disable the man searching; so only local files are displayed.

If neither a local file nor a man page was retrieved for some file parameter a warning is issued on stan-
dard error, but processing is continued.

Search Algoritm
Let us now assume that a man page should be searched. The groffer program provides a search facility
for man pages. All long options, all environment variables, and most of the functionality of the GNU
man(1) program were implemented. The search algorithm shall determine which file is displayed for a
given man page. The process can be modified by options and environment variables.

The only man action that is omitted in groffer are the preformatted man pages, also called cat pages.
With the excellent performance of the actual computers, the preformatted man pages aren’t necessary
any longer. Additionally, groffer is a roff program; it wants to read roff source files and format them it-
self.

The algorithm for retrieving the file for a man page needs first a set of directories. This set starts with
the so-called man path that is modified later on by adding names of operating system and language.

Groff Version 1.20 5 January 2009 10

GROFFER(1) GROFFER(1)

This arising set is used for adding the section directories which contain the man page files.

The man path is a list of directories that are separated by colon. It is generated by the following meth-
ods.

• The environment variable $MANPATH can be set.

• It can be read from the arguments of the environment variable $MANOPT.

• The man path can be manually specified by using the option --manpath. An empty argument dis-
ables the man page searching.

• When no man path was set the manpath(1) program is tried to determine one.

• If this does not work a reasonable default path from $PATH is determined.

We now hav e a starting set of directories. The first way to change this set is by adding names of oper-

ating systems. This assumes that man pages for several operating systems are installed. This is not al-
ways true. The names of such operating systems can be provided by 3 methods.

• The environment variable $SYSTEM has the lowest precedence.

• This can be overridden by an option in $MANOPT.

• This again is overridden by the command line option --systems.

Several names of operating systems can be given by appending their names, separated by a comma.

The man path is changed by appending each system name as subdirectory at the end of each directory
of the set. No directory of the man path set is kept. But if no system name is specified the man path is
left unchanged.

After this, the actual set of directories can be changed by language information. This assumes that
there exist man pages in different languages. The wanted language can be chosen by several methods.

• Enviroment variable $LANG.

• This is overridden by $LC_MESSAGES.

• This is overridden by $LC_ALL.

• This can be overridden by providing an option in $MANOPT.

• All these environment variables are overridden by the command line option --locale.

The default language can be specified by specifying one of the pseudo-language parameters C or
POSIX. This is like deleting a formerly given language information. The man pages in the default

language are usually in English.

Of course, the language name is determined by man. In GNU man, it is specified in the
POSIX 1003.1 based format:

<language>[_<territory>[.<character-set>[,<version>]]],

but the two-letter code in <language> is sufficient for most purposes. If for a complicated language

formulation no man pages are found groffer searches the country part consisting of these first two
characters as well.

The actual directory set is copied thrice. The language name is appended as subdirectory to each direc-
tory in the first copy of the actual directory set (this is only done when a language information is giv-
en). Then the 2-letter abbreviation of the language name is appended as subdirectories to the second
copy of the directory set (this is only done when the given language name has more than 2 letters). The
third copy of the directory set is kept unchanged (if no language information is given this is the kept di-
rectory set). These maximally 3 copies are appended to get the new directory set.

We now hav e a complete set of directories to work with. In each of these directories, the man files are
separated in sections. The name of a section is represented by a single character, a digit between 1 and
9, or the character o or n, in this order.

For each available section, a subdirectory man<section> exists containing all man files for this section,
where <section> is a single character as described before. Each man file in a section directory has the
form man<section>/<name>.<section>[<extension>][.<compression>], where <extension> and
<compression> are optional. <name> is the name of the man page that is also specified as filespec ar-
gument on the command line.

Groff Version 1.20 5 January 2009 11

GROFFER(1) GROFFER(1)

The extension is an addition to the section. This postfix acts like a subsection. An extension occurs on-
ly in the file name, not in name of the section subdirectory. It can be specified on the command line.

On the other hand, the compression is just an information on how the file is compressed. This is not
important for the user, such that it cannot be specified on the command line.

There are 4 methods to specify a section on the command line:

• Environment variable $MANSECT

• Command line option --sections

• Appendix to the name argument in the form <name>.<section>

• Preargument before the name argument in the form <section> <name>

It is also possible to specify several sections by appending the single characters separated by colons.
One can imagine that this means to restrict the man page search to only some sections. The multiple
sections are only possible for $MANSECT and --sections.

If no section is specified all sections are searched one after the other in the given order, starting with
section 1, until a suitable file is found.

There are 4 methods to specify an extension on the command line. But it is not necessary to provide
the whole extension name, some abbreviation is good enough in most cases.

• Environment variable $EXTENSION

• Command line option --extension

• Appendix to the <name>.<section> argument in the form <name>.<section><extension>

• Preargument before the name argument in the form <section><extension> <name>

For further details on man page searching, see man(1).

Examples of man files
/usr/share/man/man1/groff.1

This is an uncompressed file for the man page groff in section 1. It can be called by sh#

groffer groff No section is specified here, so all sections should be searched, but as section 1 is
searched first this file will be found first. The file name is composed of the following compo-
nents. /usr/share/man must be part of the man path; the subdirectory man1/ and the
part .1 stand for the section; groff is the name of the man page.

/usr/local/share/man/man7/groff.7.gz

The file name is composed of the following components. /usr/local/share/man must
be part of the man path; the subdirectory man7/ and the part .7 stand for the section; groff
is the name of the man page; the final part .gz stands for a compression with gzip(1). As the
section is not the first one it must be specified as well. This can be done by one of the follow-
ing commands. sh# groffer groff.7 sh# groffer 7 groff sh# groffer −−sections=7 groff

/usr/local/man/man1/ctags.1emacs21.bz2

Here /usr/local/man must be in man path; the subdirectory man1/ and the file name
part .1 stand for section 1; the name of the man page is ctags; the section has an extension
emacs21; and the file is compressed as .bz2 with bzip2(1). The file can be viewed with
one of the following commands sh# groffer ctags.1e sh# groffer 1e ctags sh# groffer −−exten-
sion=e −−sections=1 ctags where e works as an abbreviation for the extension emacs21.

/usr/man/linux/de/man7/man.7.Z

The directory /usr/man is now part of the man path; then there is a subdirectory for an op-

erating system name linux/; next comes a subdirectory de/ for the German language; the
section names man7 and .7 are known so far; man is the name of the man page; and .Z sig-
nifies the compression that can be handled by gzip(1). We want now show how to provide
several values for some options. That is possible for sections and operating system names. So
we use as sections 5 and 7 and as system names linux and aix. The command is then

sh# groffer −−locale=de −−sections=5:7 −−systems=linux,aix man sh# LANG=de MAN-
SECT=5:7 SYSTEM=linux,aix groffer man

Groff Version 1.20 5 January 2009 12

GROFFER(1) GROFFER(1)

DECOMPRESSION
The program has a decompression facility. If standard input or a file that was retrieved from the com-
mand line parameters is compressed with a format that is supported by either gzip(1) or bzip2(1) it is
decompressed on-the-fly. This includes the GNU .gz, .bz2, and the traditional .Z compression. The
program displays the concatenation of all decompressed input in the sequence that was specified on the
command line.

ENVIRONMENT
The groffer program supports many system variables, most of them by courtesy of other programs. All
environment variables of groff(1) and GNU man(1) and some standard system variables are honored.

Native groffer Variables
$GROFFER_OPT

Store options for a run of groffer. The options specified in this variable are overridden by the
options given on the command line. The content of this variable is run through the shell
builtin ‘eval’; so arguments containing white-space or special shell characters should be quot-
ed. Do not forget to export this variable, otherwise it does not exist during the run of groffer.

System Variables
The following variables have a special meaning for groffer.

$DISPLAY

If this variable is set this indicates that the X Window system is running. Testing this vari-
able decides on whether graphical or text output is generated. This variable should not be
changed by the user carelessly, but it can be used to start the graphical groffer on a remote
X Window terminal. For example, depending on your system, groffer can be started on the
second monitor by the command

sh# DISPLAY=:0.1 groffer what.ever &

$LC_ALL

$LC_MESSAGES

$LANG If one of these variables is set (in the above sequence), its content is interpreted as the locale,
the language to be used, especially when retrieving man pages. A locale name is typically of
the form language[_territory[.codeset[@modifier]]], where language is an ISO 639 language
code, territory is an ISO 3166 country code, and codeset is a character set or encoding identi-
fier like ISO-8859-1 or UTF-8; see setlocale(3). The locale values C and POSIX stand for the
default, i.e. the man page directories without a language prefix. This is the same behavior as
when all 3 variables are unset.

$PAGER

This variable can be used to set the pager for the tty output. For example, to disable the use of
a pager completely set this variable to the cat(1) program

sh# PA GER=cat groffer anything

$PATH All programs within the groffer script are called without a fixed path. Thus this environment
variable determines the set of programs used within the run of groffer.

Groff Variables
The groffer program internally calls groff, so all environment variables documented in groff(1) are in-
ternally used within groffer as well. The following variable has a direct meaning for the groffer pro-
gram.

$GROFF_TMPDIR

If the value of this variable is an existing, writable directory, groffer uses it for storing its tem-
porary files, just as groff does.

Man Variables
Parts of the functionality of the man program were implemented in groffer; support for all environ-
ment variables documented in man(1) was added to groffer, but the meaning was slightly modified due
to the different approach in groffer; but the user interface is the same. The man environment variables
can be overwritten by options provided with $MANOPT, which in turn is overwritten by the command
line.

Groff Version 1.20 5 January 2009 13

GROFFER(1) GROFFER(1)

$EXTENSION

Restrict the search for man pages to files having this extension. This is overridden by option
--extension; see there for details.

$MANOPT

This variable contains options as a preset for man(1). As not all of these are relevant for
groffer only the essential parts of its value are extracted. The options specified in this variable
overwrite the values of the other environment variables that are specific to man. All options
specified in this variable are overridden by the options given on the command line.

$MANPATH

If set, this variable contains the directories in which the man page trees are stored. This is
overridden by option --manpath.

$MANSECT

If this is a colon separated list of section names, the search for man pages is restricted to those
manual sections in that order. This is overridden by option --sections.

$SYSTEM

If this is set to a comma separated list of names these are interpreted as man page trees for dif-
ferent operating systems. This variable can be overwritten by option --systems; see there for
details.

The environment variable $MANROFFSEQ is ignored by groffer because the necessary preprocessors are
determined automatically.

CONFIGURATION FILES
The groffer program can be preconfigured by two configuration files.

/etc/groff/groffer.conf

System-wide configuration file for groffer.

$HOME/.groff/groffer.conf

User-specific configuration file for groffer, where $HOME denotes the user’s home directory.
This file is called after the system-wide configuration file to enable overriding by the user.

Both files are handled for the configuration, but the configuration file in /etc comes first; it is over-
written by the configuration file in the home directory; both configuration files are overwritten by the
environment variable $GROFFER_OPT; ev erything is overwritten by the command line arguments.

The configuration files contain options that should be called as default for every groffer run. These op-
tions are written in lines such that each contains either a long option, a short option, or a short option
cluster; each with or without an argument. So each line with configuration information starts with a
minus character ‘−’; a line with a long option starts with two minus characters ‘−−’, a line with a short
option or short option cluster starts with a single minus ‘−’.

The option names in the configuration files may not be abbreviated, they must be exact.

The argument for a long option can be separated from the option name either by an equal sign ‘=’ or by
whitespace, i.e. one or several space or tab characters. An argument for a short option or short option
cluster can be directly appended to the option name or separated by whitespace. The end of an argu-
ment is the end of the line. It is not allowed to use a shell environment variable in an option name or
argument.

It is not necessary to use quotes in an option or argument, except for empty arguments. An empty argu-
ment can be provided by appending a pair of quotes to the separating equal sign or whitespace; with a
short option, the separator can be omitted as well. For a long option with a separating equal sign ‘=’,
the pair of quotes can be omitted, thus ending the line with the separating equal sign. All other quote
characters are cancelled internally.

In the configuration files, arbitrary whitespace is allowed at the beginning of each line, it is just ig-
nored. Each whitespace within a line is replaced by a single space character ‘ ’ internally.

All lines of the configuration lines that do not start with a minus character are ignored, such that com-
ments starting with ‘#’ are possible. So there are no shell commands in the configuration files.

As an example, consider the following configuration file that can be used either in
/etc/groff/groffer.conf or ˜/.groff/groffer.conf.

Groff Version 1.20 5 January 2009 14

GROFFER(1) GROFFER(1)

groffer configuration file
#
groffer options that are used in each call of groffer
−−foreground=DarkBlue
−−resolution 100
−−x−viewer=gxditview −geometry 900x1200
−−pdf−viewer xpdf −z 150

The lines starting with # are just ignored, so they act as command lines. This configuration sets four
groffer options (the lines starting with ‘−’). This has the following effects:

• Use a text color of DarkBlue in all viewers that support this, such as gxditview.

• Use a resolution of 100 dpi in all viewers that support this, such as gxditview. By this, the default
device in x mode is set to X100.

• Force gxditview(1) as the x-mode viewer using the geometry option for setting the width to
900 dpi and the height to 1200 dpi. This geometry is suitable for a resolution of 100 dpi.

• Use xpdf(1) as the pdf-mode viewer with the argument −Z 150.

EXAMPLES
The usage of groffer is very easy. Usually, it is just called with a file name or man page. The follow-
ing examples, however, show that groffer has much more fancy capabilities. sh# groffer /usr/lo-
cal/share/doc/groff/meintro.ms.gz Decompress, format and display the compressed file
meintro.ms.gz in the directory /usr/local/share/doc/groff, using the standard viewer
gxditview as graphical viewer when in X Window, or the less(1) pager program when not in
X Window.

sh# groffer groff

If the file ./groff exists use it as input. Otherwise interpret the argument as a search for the
man page named groff in the smallest possible man section, being section 1 in this case.

sh# groffer man:groff

search for the man page of groff ev en when the file ./groff exists.

sh# groffer groff.7 sh# groffer 7 groff

search the man page of groff in man section 7. This section search works only for a digit or a single
character from a small set.

sh# groffer fb.modes

If the file ./fb.modes does not exist interpret this as a search for the man page of fb.modes. As the
extension modes is not a single character in classical section style the argument is not split to a search
for fb.

sh# groffer groff ’troff(1)’ man:roff

The arguments that are not existing files are looked-up as the following man pages: groff (automatic
search, should be found in man section 1), troff (in section 1), and roff (in the section with the lowest
number, being 7 in this case). The quotes around ’troff(1)’ are necessary because the paranthesis are
special shell characters; escaping them with a backslash character \(and \) would be possible, too. The
formatted files are concatenated and displayed in one piece.

sh# LANG=de groffer --man --www --www-viever=galeon ls

Retrieve the German man page (language de) for the ls program, decompress it, format it to html for-
mat (www mode) and view the result in the web browser galeon. The option --man guarantees that the
man page is retrieved, even when a local file ls exists in the actual directory.

Groff Version 1.20 5 January 2009 15

GROFFER(1) GROFFER(1)

sh# groffer --source ’man:roff(7)’

Get the man page called roff in man section 7, decompress it, and print its unformatted content, its
source code.

sh# groffer --de-p --in --ap

This is a set of abbreviated arguments, it is determined as

sh# groffer --debug-params --intermediate-output --apropos

sh# cat file.gz | groffer -Z -mfoo"

The file file.gz is sent to standard input, this is decompressed, and then this is transported to the
groff intermediate output mode without post-processing (groff option -Z), using macro package foo

(groff option -m) .

sh# echo ’\f[CB]WOW!’ | > groffer --x --bg red --fg yellow --geometry 200x100 -

Display the word WOW! in a small window in constant-width bold font, using color yellow on red back-
ground.

COMPATIBILITY
The groffer program is written in Perl, the Perl version during writing was v5.8.8.

groffer provides its own parser for command line arguments that is compatible to both POSIX
getopts(1) and GNU getopt(1). It can handle option arguments and file names containing white space
and a large set of special characters. The following standard types of options are supported.

• The option consisting of a single minus - refers to standard input.

• A single minus followed by characters refers to a single character option or a combination thereof;
for example, the groffer short option combination -Qmfoo is equivalent to -Q −m foo .

• Long options are options with names longer than one character; they are always preceded by a
double minus. An option argument can either go to the next command line argument or be ap-
pended with an equal sign to the argument; for example, --long=arg is equivalent to --long arg.

• An argument of -- ends option parsing; all further command line arguments are interpreted as
filespec parameters, i.e. file names or constructs for searching man pages).

• All command line arguments that are neither options nor option arguments are interpreted as
filespec parameters and stored until option parsing has finished. For example, the command line

sh# groffer file1 -a -o arg file2

is equivalent to

sh# groffer -a -o arg -- file1 file2

The free mixing of options and filespec parameters follows the GNU principle. That does not fulfill the
strange option behavior of POSIX that ends option processing as soon as the first non-option argument
has been reached. The end of option processing can be forced by the option ‘−−’ anyway.

BUGS
Report bugs to the bug-groff mailing list Include a complete, self-contained example that will allow the
bug to be reproduced, and say which version of groffer you are using.

You can also use the groff mailing list but you must first subscribe to this list. You can do that by visit-
ing the groff mailing list web page

See groff(1) for information on availability.

Groff Version 1.20 5 January 2009 16

GROFFER(1) GROFFER(1)

SEE ALSO
groff(1), troff(1)

Details on the options and environment variables available in groff; all of them can be used
with groffer.

groff(7)
Documentation of the groff language.

grog(1) Internally, groffer tries to guess the groff command line options from the input using this pro-
gram.

chem(1)
Preprocessor of groff that is run automatically.

groff_out(5)
Documentation on the groff intermediate output (ditroff output).

groff_tmac(5)
Documentation on the groff macro files.

man(1) The standard program to display man pages. The information there is only useful if it is the
man page for GNU man. Then it documents the options and environment variables that are
supported by groffer.

gxditview(1), xditview(1x)
Viewers for groffer’s x mode.

kpdf(1), kghostview(1), evince(1), ggv(1), gv(1), ghostview(1), gs(1)
Viewers for groffer’s ps mode.

kpdf(1), acroread(1), evince(1), xpdf(1), gpdf(1), kghostview(1), ggv(1)
Viewers for groffer’s pdf mode.

kdvi(1), xdvi(1), dvilx(1)
Viewers for groffer’s dvi mode.

konqueror(1), epiphany(1), firefox(1), mozilla(1), netscape(1), lynx(1)
Web-browsers for groffer’s html or www mode.

less(1) Standard pager program for the tty mode .

gzip(1), bzip2(1)
The decompression programs supported by groffer.

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2001, 2002, 2004, 2005, 2006, 2009
Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also visit <http://www.gnu.org/licenses/>.

Groff Version 1.20 5 January 2009 17

GROG(1) GROG(1)

GROG

NAME
grog − guess options for groff command

SYNOPSIS
[−C] [groff−option . . .] [−−] [filespec . . .] −h | −−help −v | −−version

DESCRIPTION
grog reads the input (file names or standard input) and guesses which of the groff(1) options are
needed to perform the input with the groff program. The corresponding groff command is output.

OPTIONS
The only grog options recognized are −C (which is also passed on) to enable compatibility mode; −v
and −−version print information on the version number; and −h and −−help print usage information.
−v, −−version, −h, and −−help stop the program directly without printing a groff command to stan-
dard output.

All other specified short options (words starting with one minus character −) are interpreted as groff
options or option clusters with or without argument. No space is allowed between options and their
argument. Except from the −marg options, all options will be passed on, i.e. they are included
unchanged in the command for the output without effecting the work of grog.

A filespec argument can either be the name of an existing file or a single minus − to mean standard
input. If no filespec is specified standard input is read automatically.

DETAILS
grog reads all filespec parameters as a whole. It tries to guess which of the following groff options are
required for running the input under groff: −e, −man, −me, −mm, −mom, −ms, −mdoc, −mdoc-old,
−p, −R, −g, −G, −s, and −t. The guessed groff command including those options and the found file-

spec parameters is put on the standard output.

It is possible to specify arbitrary groff options on the command line. These are passed on the output
without change, except for the −marg options.

The groff program has trouble when the wrong −marg option or several of these options are specified.
In these cases, grog will print an error message and exit with an error code. It is better to specify no
−marg option. Because such an option is only accepted and passed when grog does not find any of
these options or the same option is found.

If several different −marg options are found by grog an error message is produced and the program is
terminated with an error code. But the output is written with the wrong options nevertheless.

Remember that it is not necessary to determine a macro package. A roff file can also be written in the
groff language without any macro package. grog will produce an output without an −marg option.

As groff also works with pure text files without any roff requests, grog cannot be used to identify a file
to be a roff file.

The groffer(1) program heavily depends on a working grog.

The grog source contains two files written in different programming languages: grog.pl is the Perl

version, while grog.sh is a shell script using BR awk (1). During the run of make(1), it is deter-
mined whether the system contains a suitable version of perl(1). If so, grog.pl is transformed into
grog; otherwise grog.sh is used instead.

EXAMPLES
• Calling

grog meintro.me

results in

groff −me meintro.me

So grog recognized that the file meintro.me is written with the −me macro package.

• On the other hand,

grog pic.ms

Groff Version 1.20 5 January 2009 1

GROG(1) GROG(1)

outputs

groff −pte −ms pic.ms

Besides determining the macro package −ms, grog recognized that the file pic.ms additionally
needs −pte, the combination of −p for pic, −t for tbl, and −e for eqn.

• If both files are combined by the command

grog meintro.me pic.ms

an error message is sent to standard error because groff cannot work with two different macro
packages:

grog: error: there are several macro packages: -me -ms

Additionally the corresponding output with the wrong options is printed to standard output:

groff -pte -me -ms meintro.me pic.ms

But the program is terminated with an error code.

• The call of

grog −ksS −Tdvi grnexmpl.g

contains several groff options that are just passed on the output without any interface to grog.
These are the option cluster −ksS consisting of −k, −s, and −S; and the option −T with argu-
ment dvi. The output is

groff −ksS −Tdvi grnexmpl.g

so no additional option was added by grog. As no option −marg was found by grog this file
does not use a macro package.

• grog can also handle files using the chem language. The example

grog chAh_brackets.chem

outputs

chem chAh_brackets.chem | groff −pe

So chem is run first and groff is appended. The option −p for pic is implied automatically by
chem. Additionally, the file uses eqn with −e.

SEE ALSO
groff(1), troff(1), tbl(1), pic(1), eqn(1), refer(1), grn(1), grap(1), soelim(1), groff_me(7),
groff_ms(7), groff_mm(7), groff_mom(7), groff_man(7), groffer(1)

COPYING
Copyright (C) 1989-2000, 2001, 2002, 2003, 2006, 2007, 2009 Free Software Foundation, Inc. Written
by James Clark. Maintained by Werner Lemberg Rewritten and put under GPL by Bernd Warken.

This file is part of grog, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License (GPL) as published by the Free
Software Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 5 January 2009 2

GROHTML(1) GROHTML(1)

GROHTML

NAME
grohtml − html driver for groff

SYNOPSIS
grohtml [−bhlnprv] [−aaa-text-bits] [−Ddir] [−Fdir] [−gaa-graphic-bits] [−iresolution]

[−Iimage-stem] [−jfilename] [−oimage-vertical-offset] [−ssize] [−Slevel]
[−xhtml-dialect] [files . . .]

DESCRIPTION
The grohtml front end (which consists of a preprocessor, pre-grohtml, and a device driver, post-gro-
html) translates the output of GNU troff to html. Users should always invoke grohtml via the groff
command with a −Thtml option. If no files are given, grohtml will read the standard input. A file-
name of − will also cause grohtml to read the standard input. Html output is written to the standard
output. When grohtml is run by groff options can be passed to grohtml using groff’s −P option.

OPTIONS
−aaa-text-bits

Number of bits of antialiasing information to be used by text when generating png images.
The default is 4 but valid values are 0, 1, 2, and 4. Note your version of gs needs to support
the −dTextAlphaBits and −dGraphicAlphaBits options in order to exploit antialiasing. A
value of 0 stops grohtml from issuing antialiasing commands to gs.

−b Initialize the background color to white.

−Ddir Inform grohtml to place all image files into directory dir.

−e This option should not be directly invoked by the user as it is an internal option utilized by
groff when −Thtml or −Txhtml is specified. It is used by the grohtml preprocessor to deter-
mine whether eqn should attempt to produce MathML (if −Txhtml is specified).

−Fdir Prepend directory dir/devname to the search path for font and device description files; name is
the name of the device, usually html.

−gaa-graphic-bits

Number of bits of antialiasing information to be used by graphics when generating png
images. The default is 4 but valid values are 0, 1, 2, and 4. Note your version of gs needs to
support the −dTextAlphaBits and −dGraphicAlphaBits options in order to exploit antialias-
ing. A value of 0 stops grohtml from issuing antialiasing commands to gs.

−h Generate section and number headings by using . . . and increasing the font size,
rather than using the <Hn>. . .</Hn> tags.

−iresolution

Select the resolution for all images. By default this is 100 pixels per inch. Example: −i200
indicates 200 pixels per inch.

−Istem Determine the image stem name. If omitted grohtml uses grohtml-XXX (XXX is the process
ID).

−j filename

Inform grohtml to split the html output into multiple files. The filename is the stem and speci-
fied section headings (default is level one) start a new file, named filename-n.html.

−l Turn off the production of automatic section links at the top of the document.

−n Generate simple heading anchors whenever a section/number heading is found. Without the
option the anchor value is the textual heading. This can cause problems when a heading con-
tains a ‘?’ on older versions of some browsers (Netscape). This flag is automatically turned on
if a heading contains an image.

−overtical-offset

Specify the vertical offset of images in points.

−p Display page rendering progress to stderr. grohtml only displays a page number when an
image is required.

−r Turn off the automatic header and footer line (html rule).

Groff Version 1.20 5 January 2009 1

GROHTML(1) GROHTML(1)

−s size Set the base point size of the source file. Thereafter when this point size is used in the source
it will correspond to the html base size. Every increase of two points in the source will yield a
<big> tag, and conversely when a decrease of two points is seen a <small> tag is emitted.

−Slevel When splitting html output, split at the heading level (or higher) defined by level.

−v Print the version number.

−V Create an XHTML or HTML validator button at the bottom of each page of the document.

−xdialect

Select HTML dialect. Currently, dialect should be either the digit 4 or the letter x which indi-
cates whether grohtml should generate HTML 4 or XHTML, respectively. This option should
not be directly invoked by the user as it is an internal option utilized by groff when −Thtml or
−Txhtml is specified.

−y Produce a right-justified groff signature at the end of the document. This is only generated if
the −V flag is also specified.

USAGE
There are styles called R, I, B, and BI mounted at font positions 1 to 4.

DEPENDENCIES
grohtml is dependent upon the png utilities (pnmcut, pnmcrop, pnmtopng) and GhostScript (gs).
pnmtopng (version 2.37.6 or greater) and pnmcut from the netpbm package (version 9.16 or greater)
will work also. It is also dependent upon psselect from the PSUtils package. Images are generated
whenever a table, picture, equation or line is encountered.

ENVIRONMENT
GROFF_FONT_PATH

A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

BUGS
Grohtml has been completely redesigned and rewritten. It is still beta code.

SEE ALSO
afmtodit(1), groff(1), troff(1), psbb(1), groff_out(5), groff_font(5), groff_char(7)

Groff Version 1.20 5 January 2009 2

GROLBP(1) GROLBP(1)

GROLBP

NAME
grolbp − groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers).

SYNOPSIS
grolpb [−l] [−−landscape] [−v] [−−version] [−cn] [−−copies=numcopies] [−p paper_size]

[−−papersize=paper_size] [−oorientation] [−−orientation=orientation] [−wwidth]
[−−linewidth=width] [−Fdir] [−−fontdir=dir] [−h] [−−help] [files . . .]

DESCRIPTION
grolbp is a driver for groff that produces output in CAPSL and VDM format suitable for Canon
LBP−4 and LBP−8 printers.

For compatibility with grolj4 there is an additional drawing command available:

\D’R dh dv’
Draw a rule (i.e. a solid black rectangle), with one corner at the current position, and the diag-
onally opposite corner at the current position +(dh,dv).

OPTIONS
Note that there can be whitespace between a one-letter option and its argument; on the other hand,
there must be whitespace and/or an equal sign (‘=’) between a long-name option and its argument.

−cnumcopies

−−copies=numcopies

Print numcopies copies of each page.

−l
−−landscape

Print the document with a landscape orientation.

−p paper_size

−−papersize=paper_size

Set the paper size to paper_size, which must be a valid paper size description as indicated in
the section PAPER SIZES.

−oorientation

−−orientation=orientation

Print the document with orientation orientation, which must be ‘portrait’ or ‘landscape’.

−wwidth

−−linewidth=width

Set the default line thickness to width thousandths of an em. If this option isn’t specified, the
line thickness defaults to 0.04 em.

−v
−−version

Print the version number.

−Fdir

−−fontdir=dir

Prepend directory dir/devname to the search path for font and device description files; name is
the name of the device, usually lbp.

−h
−−help Print a short help text.

TYPEFACES
The driver supports the Dutch, Swiss and Swiss-Narrow scalable typefaces, each one in the Regular,
Bold, Italic and Bold-Italic styles. Additionally, the Courier and Elite monospaced typefaces at the
sizes 8 and 12 points (for Courier) resp. 8 and 10 points (for Elite) are supported, each one in the Regu-
lar, Bold and Italic styles.

The following chart summarizes the font names you can use to access these fonts:

Groff Version 1.20 5 January 2009 1

GROLBP(1) GROLBP(1)

PAPER SIZES
The paper size can be set in the DESC file or with command line options to grolbp. If the paper size is
specified both ways, the command line options take precedence over the contents of the DESC file (this
applies to the page orientation too).

See groff_font(1) how to set the paper dimensions in the DESC file.

To set the paper size in the command line, add

−p paper-size

or

−−papersize=paper-size

to the other grolbp options, where paper-size is in the same format as in the DESC file.

If no paper size is specified in the DESC file or the command line, a default size of A4 is used.

PA GE ORIENTATION
As with the page size, the orientation of the printed page (portrait or landscape) can be set in the DE-
SC file or with command line options. It is also case insensitive.

To set the orientation in the DESC file, insert a line with the following content:

orientation [portrait|landscape]

Only the first valid orientation command in the DESC file is used.

To set the page orientation with command line options you can use the −o or −−orientation option
with the same parameters (portrait or landscape) as in the DESC file. Or you can use the −l option to
force the pages to be printed in landscape.

FONT FILE FORMAT
In addition to the usual commands described in groff_font(5), grolbp provides the command lbpname

which sets the font name sent to the printer when requesting this font. The syntax of this command is:

lbpname printer_font_name

• For bitmapped fonts, printer_font_name has the form

N〈base_fontname〉〈 font_style〉

base_fontname is the font name as it appears in the printers font listings without the first letter,
up to (but not including) the font size. font_style can be one of the letters R, I, or B, indicating
the font styles Roman, Italic and Bold respectively.

For instance, if the printer’s font listing A shows font ‘Nelite12I.ISO_USA’, the corresponding
entry in the font description file is

lbpname NeliteI

Note that you may need to modify grolbp to add support for new bitmapped fonts, since the
available font names and font sizes of bitmapped fonts (as documented above) are hard-coded
into the program.

• For scalable fonts, printer_font_name is identical to the font name as it appears in the printer’s
font listing A.

For instance, to select the ‘Swiss’ font in bold style, which appears in the printer’s font listing

A as ‘Swiss-Bold’, the required lbpname command line is

lbpname Swiss-Bold

The argument of lbpname is case sensitive.

Groff Version 1.20 5 January 2009 2

GROLBP(1) GROLBP(1)

ENVIRONMENT
GROFF_FONT_PATH

A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devlbp/DESC

Device description file.

c:/progra˜1/groff/share/groff/1.20/font/devlbp/F
Font description file for font F .

c:/progra˜1/groff/share/groff/1.20/tmac/lbp.tmac
Macros for use with grolbp.

SEE ALSO
groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7)

Groff Version 1.20 5 January 2009 3

GROLJ4(1) GROLJ4(1)

GROLJ4

NAME
grolj4 − groff driver for HP Laserjet 4 family

SYNOPSIS
grolj4 [−lv] [−d[n]] [−cn] [−p paper_size] [−wn] [−Fdir] [files . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
grolj4 is a driver for groff that produces output in PCL5 format suitable for an HP Laserjet 4 printer.

There is an additional drawing command available:

\D’R dh dv’
Draw a rule (solid black rectangle), with one corner at the current position, and the diagonally
opposite corner at the current position +(dh,dv). Afterwards the current position will be at the
opposite corner. This generates a PCL fill rectangle command, and so will work on printers
that do not support HPGL/2 unlike the other \D commands.

OPTIONS
−cn Print n copies of each page.

−l Print the document with a landscape orientation.

−d [n] Use duplex mode n: 1 is long-side binding; 2 is short-side binding; default is 1.

−psize Set the paper size to size, which must be one of letter, leg al, executive, a4, com10, monarch,
c5, b5, dl.

−v Print the version number.

−wn Set the default line thickness to n thousandths of an em. If this option isn’t specified, the line
thickness defaults to 0.04 em.

−Fdir Prepend directory dir/devname to the search path for font and device description files; name is
the name of the device, usually lj4.

The following four commands are available additionally in the font description files:

pclweight N

The integer value N must be in the range -7 to +7; default is 0.

pclstyle N

The integer value N must be in the range 0 to 32767; default is 0.

pclproportional N

A boolean flag which can be either 0 or 1; default is 0.

pcltypeface N

The integer value N must be in the range 0 to 65535; default is 0.

ENVIRONMENT
GROFF_FONT_PATH

A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devlj4/DESC

Device description file.

c:/progra˜1/groff/share/groff/1.20/font/devlj4/F
Font description file for font F .

c:/progra˜1/groff/share/groff/1.20/tmac/lj4.tmac
Macros for use with grolj4.

BUGS
Small dots.

SEE ALSO
lj4_font(5), groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7)

Groff Version 1.20 5 January 2009 1

GROPS(1) GROPS(1)

GROPS

NAME
grops − PostScript driver for groff

SYNOPSIS
[−glmv] [−bn] [−cn] [−Fdir] [−Idir] [−p papersize] [−P prologue] [−wn] [files . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
grops translates the output of GNU troff to PostScript. Normally grops should be invoked by using
the groff command with a −Tps option. (Actually, this is the default for groff.) If no files are given,
grops reads the standard input. A filename of − also causes grops to read the standard input. Post-
Script output is written to the standard output. When grops is run by groff options can be passed to
grops using groff’s −P option.

Note that grops doesn’t produce a valid document structure (conforming to the Document Structuring
Convention) if called with multiple file arguments. To print such concatenated output it is necessary to
deactivate DSC handling in the printing program or previewer. See section FONT INSTALLATION
below for a guide how to install fonts for grops.

OPTIONS
−bn Provide workarounds for older printers, broken spoolers, and previewers. Normally grops

produces output at PostScript LanguageLevel 2 that conforms to the Document Structuring
Conventions version 3.0. Some older printers, spoolers, and previewers can’t handle such out-
put. The value of n controls what grops does to make its output acceptable to such programs.
A value of 0 causes grops not to employ any workarounds.

Add 1 if no %%BeginDocumentSetup and %%EndDocumentSetup comments should be
generated; this is needed for early versions of TranScript that get confused by anything
between the %%EndProlog comment and the first %%Page comment.

Add 2 if lines in included files beginning with %! should be stripped out; this is needed for
Sun’s pageview previewer.

Add 4 if %%Page, %%Trailer and %%EndProlog comments should be stripped out of
included files; this is needed for spoolers that don’t understand the %%BeginDocument and
%%EndDocument comments.

Add 8 if the first line of the PostScript output should be %!PS-Adobe-2.0 rather than %!PS-
Adobe-3.0; this is needed when using Sun’s Newsprint with a printer that requires page rever-
sal.

Add 16 if no media size information should be included in the document (this is, neither use
%%DocumentMedia nor the setpagedevice PostScript command). This was the behaviour
of groff version 1.18.1 and earlier; it is needed for older printers which don’t understand Post-
Script LanguageLevel 2. It is also necessary if the output is further processed to get an encap-
sulated PS (EPS) file – see below.

The default value can be specified by a

broken n

command in the DESC file. Otherwise the default value is 0.

−cn Print n copies of each page.

−Fdir Prepend directory dir/devname to the search path for prologue, font, and device description
files; name is the name of the device, usually ps.

−g Guess the page length. This generates PostScript code that guesses the page length. The
guess is correct only if the imageable area is vertically centered on the page. This option
allows you to generate documents that can be printed both on letter (8.5×11) paper and on A4
paper without change.

−Idir This option may be used to add a directory to the search path for files on the command line
and files named in \X’ps: import’ and \X’ps: file’ escapes. The search path is initialized with
the current directory. This option may be specified more than once; the directories are then

Groff Version 1.20 5 January 2009 1

GROPS(1) GROPS(1)

searched in the order specified (but before the current directory). If you want to make the cur-
rent directory be read before other directories, add −I. at the appropriate place.

No directory search is performed for files with an absolute file name.

−l Print the document in landscape format.

−m Turn manual feed on for the document.

−p paper-size

Set physical dimension of output medium. This overrides the papersize, paperlength, and
paperwidth commands in the DESC file; it accepts the same arguments as the papersize
command. See groff_font (5) for details.

−P prologue-file

Use the file prologue-file (in the font path) as the prologue instead of the default prologue file
prologue. This option overrides the environment variable GROPS_PROLOGUE.

−wn Lines should be drawn using a thickness of n thousandths of an em. If this option is not given,
the line thickness defaults to 0.04 em.

−v Print the version number.

USAGE
The input to grops must be in the format output by troff(1). This is described in groff_out(5).

In addition, the device and font description files for the device used must meet certain requirements:
The resolution must be an integer multiple of 72 times the sizescale. The ps device uses a resolution of
72000 and a sizescale of 1000.

The device description file must contain a valid paper size; see groff_font(5) for more information.

Each font description file must contain a command

internalname psname

which says that the PostScript name of the font is psname. It may also contain a command

encoding enc_file

which says that the PostScript font should be reencoded using the encoding described in enc_file; this
file should consist of a sequence of lines of the form:

pschar code

where pschar is the PostScript name of the character, and code is its position in the encoding expressed
as a decimal integer; valid values are in the range 0 to 255. Lines starting with # and blank lines are
ignored. The code for each character given in the font file must correspond to the code for the charac-
ter in encoding file, or to the code in the default encoding for the font if the PostScript font is not to be
reencoded. This code can be used with the \N escape sequence in troff to select the character, even if
the character does not have a groff name. Every character in the font file must exist in the PostScript
font, and the widths given in the font file must match the widths used in the PostScript font. grops
assumes that a character with a groff name of space is blank (makes no marks on the page); it can make
use of such a character to generate more efficient and compact PostScript output.

Note that grops is able to display all glyphs in a PostScript font, not only 256. enc_file (or the default
encoding if no encoding file specified) just defines the order of glyphs for the first 256 characters; all
other glyphs are accessed with additional encoding vectors which grops produces on the fly.

grops can automatically include the downloadable fonts necessary to print the document. Such fonts
must be in PFA format. Use pfbtops(1) to convert a Type 1 font in PFB format. Any downloadable
fonts which should, when required, be included by grops must be listed in the file c:/pro-
gra˜1/groff/share/groff/1.20/font/devps/download; this should consist of lines of the form

font filename

where font is the PostScript name of the font, and filename is the name of the file containing the font;
lines beginning with # and blank lines are ignored; fields may be separated by tabs or spaces; filename

is searched for using the same mechanism that is used for groff font metric files. The download file
itself is also searched for using this mechanism; currently, only the first found file in the font path is
used.

Groff Version 1.20 5 January 2009 2

GROPS(1) GROPS(1)

If the file containing a downloadable font or imported document conforms to the Adobe Document
Structuring Conventions, then grops interprets any comments in the files sufficiently to ensure that its
own output is conforming. It also supplies any needed font resources that are listed in the download
file as well as any needed file resources. It is also able to handle inter-resource dependencies. For
example, suppose that you have a downloadable font called Garamond, and also a downloadable font
called Garamond-Outline which depends on Garamond (typically it would be defined to copy Gara-
mond’s font dictionary, and change the PaintType), then it is necessary for Garamond to appear before
Garamond-Outline in the PostScript document. grops handles this automatically provided that the
downloadable font file for Garamond-Outline indicates its dependence on Garamond by means of the
Document Structuring Conventions, for example by beginning with the following lines

%!PS-Adobe-3.0 Resource-Font
%%DocumentNeededResources: font Garamond
%%EndComments
%%IncludeResource: font Garamond

In this case both Garamond and Garamond-Outline would need to be listed in the download file. A
downloadable font should not include its own name in a %%DocumentSuppliedResources comment.

grops does not interpret %%DocumentFonts comments. The %%DocumentNeededResources,
%%DocumentSuppliedResources, %%IncludeResource, %%BeginResource, and %%End-
Resource comments (or possibly the old %%DocumentNeededFonts, %%DocumentSupplied-
Fonts, %%IncludeFont, %%BeginFont, and %%EndFont comments) should be used.

In the default setup there are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts
are grouped into families A, BM, C, H, HN, N, P, and T having members in each of these styles:

AR Av antGarde-Book

AI Av antGarde-BookOblique

AB Av antGarde-Demi

ABI Av antGarde-DemiOblique

BMR Bookman-Light

BMI Bookman-LightItalic

BMB Bookman-Demi

BMBI Bookman-DemiItalic

CR Courier
CI Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique

HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique

HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique

NR NewCenturySchlbk-Roman

NI NewCenturySchlbk-Italic

NB NewCenturySchlbk-Bold

NBI NewCenturySchlbk-BoldItalic

PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-BoldItalic

TR Times-Roman
TI Times-Italic

TB Times-Bold
TBI Times-BoldItalic

There is also the following font which is not a member of a family:

Groff Version 1.20 5 January 2009 3

GROPS(1) GROPS(1)

ZCMI ZapfChancery-MediumItalic

There are also some special fonts called S for the PS Symbol font, and SS, containing slanted lower-
case Greek letters taken from PS Symbol. Zapf Dingbats is available as ZD, and a reversed version of
ZapfDingbats (with symbols pointing in the opposite direction) is available as ZDR; most characters in
these fonts are unnamed and must be accessed using \N.

The default color for \m and \M is black; for colors defined in the ‘rgb’ color space setrgbcolor is
used, for ‘cmy’ and ‘cmyk’ setcmykcolor, and for ‘gray’ setgray. Note that setcmykcolor is a Post-
Script LanguageLevel 2 command and thus not available on some older printers.

grops understands various X commands produced using the \X escape sequence; grops only interprets
commands that begin with a ps: tag.

\X’ps: exec code’
This executes the arbitrary PostScript commands in code. The PostScript currentpoint is set to
the position of the \X command before executing code. The origin is at the top left corner of
the page, and y coordinates increase down the page. A procedure u is defined that converts
groff units to the coordinate system in effect (provided the user doesn’t change the scale). For
example,

.nr x 1i
\X’ps: exec \nx u 0 rlineto stroke’

draws a horizontal line one inch long. code may make changes to the graphics state, but any
changes persist only to the end of the page. A dictionary containing the definitions specified
by the def and mdef is on top of the dictionary stack. If your code adds definitions to this dic-
tionary, you should allocate space for them using \X’ps mdef n’. Any definitions persist only
until the end of the page. If you use the \Y escape sequence with an argument that names a
macro, code can extend over multiple lines. For example,

.nr x 1i

.de y
ps: exec
\nx u 0 rlineto
stroke
..
\Yy

is another way to draw a horizontal line one inch long. Note the single backslash before ‘nx’
– the only reason to use a number register while defining the macro ‘y’ is to convert a user-
specified dimension ‘1i’ to internal groff units which are in turn converted to PS units with the
u procedure.

grops wraps user-specified PostScript code into a dictionary, nothing more. In particular, it
doesn’t start and end the inserted code with save and restore, respectively. This must be sup-
plied by the user, if necessary.

\X’ps: file name’
This is the same as the exec command except that the PostScript code is read from file name.

\X’ps: def code’
Place a PostScript definition contained in code in the prologue. There should be at most one
definition per \X command. Long definitions can be split over sev eral \X commands; all the
code arguments are simply joined together separated by newlines. The definitions are placed
in a dictionary which is automatically pushed on the dictionary stack when an exec command
is executed. If you use the \Y escape sequence with an argument that names a macro, code

can extend over multiple lines.

\X’ps: mdef n code’
Like def, except that code may contain up to n definitions. grops needs to know how many
definitions code contains so that it can create an appropriately sized PostScript dictionary to
contain them.

\X’ps: import file llx lly urx ury width [height]’
Import a PostScript graphic from file. The arguments llx, lly, urx, and ury give the bounding

Groff Version 1.20 5 January 2009 4

GROPS(1) GROPS(1)

box of the graphic in the default PostScript coordinate system; they should all be integers; llx

and lly are the x and y coordinates of the lower left corner of the graphic; urx and ury are the x
and y coordinates of the upper right corner of the graphic; width and height are integers that
give the desired width and height in groff units of the graphic.

The graphic is scaled so that it has this width and height and translated so that the lower left
corner of the graphic is located at the position associated with \X command. If the height
argument is omitted it is scaled uniformly in the x and y directions so that it has the specified
width.

Note that the contents of the \X command are not interpreted by troff; so vertical space for the
graphic is not automatically added, and the width and height arguments are not allowed to
have attached scaling indicators.

If the PostScript file complies with the Adobe Document Structuring Conventions and con-
tains a %%BoundingBox comment, then the bounding box can be automatically extracted
from within groff by using the psbb request.

See groff_tmac(5) for a description of the PSPIC macro which provides a convenient high-
level interface for inclusion of PostScript graphics.

\X’ps: invis’
\X’ps: endinvis’

No output is generated for text and drawing commands that are bracketed with these \X com-
mands. These commands are intended for use when output from troff is previewed before
being processed with grops; if the previewer is unable to display certain characters or other
constructs, then other substitute characters or constructs can be used for previewing by brack-
eting them with these \X commands.

For example, gxditview is not able to display a proper \(em character because the standard
X11 fonts do not provide it; this problem can be overcome by executing the following request

.char \(em \X’ps: invis’\
\Z’\v’-.25m’\h’.05m’\D’l .9m 0’\h’.05m’’\
\X’ps: endinvis’\(em

In this case, gxditview is unable to display the \(em character and draws the line, whereas
grops prints the \(em character and ignores the line (this code is already in file Xps.tmac
which is loaded if a document intended for grops is previewed with gxditview).

If a PostScript procedure BPhook has been defined via a ‘ps: def’ or ‘ps: mdef’ device command, it is
executed at the beginning of every page (before anything is drawn or written by groff). For example, to
underlay the page contents with the word ‘DRAFT’ in light gray, you might use

.de XX
ps: def
/BPhook
{ gsave .9 setgray clippath pathbbox exch 2 copy
.5 mul exch .5 mul translate atan rotate pop pop
/NewCenturySchlbk-Roman findfont 200 scalefont setfont
(DRAFT) dup stringwidth pop −.5 mul −70 moveto show
grestore }

def
..
.devicem XX

Or, to cause lines and polygons to be drawn with square linecaps and mitered linejoins instead of the
round linecaps and linejoins normally used by grops, use

.de XX
ps: def
/BPhook { 2 setlinecap 0 setlinejoin } def
..
.devicem XX

(square linecaps, as opposed to butt linecaps (0 setlinecap), give true corners in boxed tables even

Groff Version 1.20 5 January 2009 5

GROPS(1) GROPS(1)

though the lines are drawn unconnected).

Encapsulated PostScript
grops itself doesn’t emit bounding box information. With the help of Ghostscript the following simple
script, groff2eps, produces an encapsulated PS file.

#! /bin/sh
groff −P−b16 $1 >$1.ps
gs −dNOPAUSE −sDEVICE=bbox −− $1.ps 2>$1.bbox
cat $1.ps \
| sed −e "/^%%Orientation/r$1.bbox" \

−e "/^%!PS-Adobe-3.0/s/$/ EPSF-3.0/" >$1.eps
rm $1.ps $1.bbox

Just say

groff2eps foo

to convert file foo to foo.eps.

TrueType and other font formats
TrueType fonts can be used with grops if converted first to Type 42 format, a special PostScript wrap-
per equivalent to the PFA format mentioned in pfbtops(1). There are several different methods to gen-
erate a type42 wrapper and most of them involve the use of a PostScript interpreter such as Ghostscript
– see gs(1).

Yet, the easiest method involves the use of the application ttftot42(1). This program uses freetype(3)
(version 1.3.1) to generate type42 font wrappers and well-formed AFM files that can be fed to the
afmtodit(1) script to create appropriate metric files. The resulting font wrappers should be added to
the download file. ttftot42 source code can be downloaded from ftp://www.giga.or.at/pub/nih/ttftot42/

Another solution for creating type42 wrappers is to use FontForge, available from http://fontforge.sf.net
This font editor can convert most outline font formats.

FONT INSTALLATION
This section gives a summary of the above explanations; it can serve as a step-by-step font installation
guide for grops.

• Convert your font to something groff understands. This is either a PostScript Type 1 font in PFA
format or a PostScript Type 42 font, together with an AFM file.

The very first characters in a PFA file look like this:

%!PS-AdobeFont-1.0:

A PFB file has this also in the first line, but the string is preceded with some binary bytes.

The very first characters in a Type 42 font file look like this:

%!PS-TrueTypeFont

This is a wrapper format for TrueType fonts. Old PS printers might not support it (this is, they
don’t hav e a built-in TrueType font interpreter).

If your font is in PFB format (such fonts normally have ‘.pfb’ as the file extension), you might use
groff’s pfbtops(1) program to convert it to PFA. For TrueType fonts, try ttftot42 or fontforge.
For all other font formats use fontforge which can convert most outline font formats.

• Convert the AFM file to a groff font description file with the afmtodit(1) program. An example
call is

afmtodit Foo-Bar-Bold.afm textmap FBB

which converts the metric file ‘Foo-Bar-Bold.afm’ to the groff font ‘FBB’. If you have a font fam-
ily which comes with normal, bold, italic, and bold italic faces, it is recommended to use the let-
ters R, B, I, and BI, respectively, as postfixes in the groff font names to make groff’s ‘.fam’
request work. An example is groff’s built-in Times-Roman font: The font family name is T, and
the groff font names are TR, TB, TI, and TBI.

• Install both the groff font description files and the fonts in a ‘devps’ subdirectory of the font path
which groff finds. See the ENVIRONMENT section in the troff(1) man page which lists the

Groff Version 1.20 5 January 2009 6

GROPS(1) GROPS(1)

actual value of the font path. Note that groff doesn’t use the AFM files (but it is a good idea to
store them anyway).

• Register all fonts which must be downloaded to the printer in the ‘devps/download’ file. Only the
first occurrence of this file in the font path is read. This means that you should copy the default
‘download’ file to the first directory in your font path and add your fonts there. To continue the
above example we assume that the PS font name for Foo-Bar-Bold.pfa is ‘XY-Foo-Bar-Bold’ (the
PS font name is stored in the internalname field in the ‘FBB’ file), thus the following line should
be added to ‘download’.

XY-Foo-Bar-Bold Foo-Bar-Bold.pfa

OLD FONTS
groff versions 1.19.2 and earlier contain a slightly different set of the 35 Adobe core fonts; the differ-
ence is mainly the lack of the ‘Euro’ glyph and a reduced set of kerning pairs. For backwards compati-
bility, these old fonts are installed also in the

c:/progra˜1/groff/share/groff/1.20/oldfont/devps

directory.

To use them, make sure that grops finds the fonts before the default system fonts (with the same
names): Either add command line option −F to grops

groff −Tps −P−F −Pc:/progra˜1/groff/share/groff/1.20/oldfont . . .

or add the directory to groff’s font path environment variable

GROFF_FONT_PATH=c:/progra˜1/groff/share/groff/1.20/oldfont

ENVIRONMENT
GROPS_PROLOGUE

If this is set to foo, then grops uses the file foo (in the font path) instead of the default pro-
logue file prologue. The option −P overrides this environment variable.

GROFF_FONT_PATH
A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devps/DESC

Device description file.

c:/progra˜1/groff/share/groff/1.20/font/devps/F
Font description file for font F .

c:/progra˜1/groff/share/groff/1.20/font/devps/download
List of downloadable fonts.

c:/progra˜1/groff/share/groff/1.20/font/devps/text.enc
Encoding used for text fonts.

c:/progra˜1/groff/share/groff/1.20/tmac/ps.tmac
Macros for use with grops; automatically loaded by troffrc

c:/progra˜1/groff/share/groff/1.20/tmac/pspic.tmac
Definition of PSPIC macro, automatically loaded by ps.tmac.

c:/progra˜1/groff/share/groff/1.20/tmac/psold.tmac
Macros to disable use of characters not present in older PostScript printers (e.g., ‘eth’ or
‘thorn’).

/tmp/gropsXXXXXX

Temporary file.

SEE ALSO
afmtodit(1), groff(1), troff(1), pfbtops(1), groff_out(5), groff_font(5), groff_char(7), groff_tmac(5)

PostScript Language Document Structuring Conventions Specification

Groff Version 1.20 5 January 2009 7

GROTTY(1) GROTTY(1)

GROTTY

NAME
grotty − groff driver for typewriter-like devices

SYNOPSIS
grotty [−bBcdfhioruUv] [−Fdir] [files . . .]

It is possible to have whitespace between the −F option and its parameter.

DESCRIPTION
grotty translates the output of GNU troff into a form suitable for typewriter-like devices. Normally
grotty should be invoked by using the groff command with a −Tascii, −Tlatin1 or −Tutf8 option on
ASCII based systems, and with −Tcp1047 and −Tutf8 on EBCDIC based hosts. If no files are given,
grotty reads the standard input. A filename of − also causes grotty to read the standard input. Output
is written to the standard output.

By default, grotty emits SGR escape sequences (from ISO 6429, also called ANSI color escapes) to
change text attributes (bold, italic, colors). This makes it possible to have eight different background
and foreground colors; additionally, bold and italic attributes can be used at the same time (by using
the BI font).

The following colors are defined in tty.tmac: black, white, red, green, blue, yellow, magenta, cyan.
Unknown colors are mapped to the default color (which is dependent on the settings of the terminal; in
most cases, this is black for the foreground and white for the background).

Use the −c switch to revert to the old behaviour, printing a bold character c with the sequence ‘c
BACKSPACE c’ and an italic character c by the sequence ‘_ BACKSPACE c’. At the same time, color
output is disabled. The same effect can be achieved by setting either the GROFF_NO_SGR environ-
ment variable or using the ‘sgr’ X command (see below).

For SGR support, it is necessary to use the −R option of less(1) to disable the interpretation of grotty’s
old output format. Consequently, all programs which use less as the pager program have to pass this
option to it. For man(1) in particular, either add −R to the $PAGER environment variable, e.g.

PA GER="/usr/bin/less -R"
export PAGER

or use the −P option of man to set the pager executable and its options, or modify the configuration file
of man in a similar fashion. Note that with some man(1) versions, you have to use the $MANPAGER
environment variable instead.

grotty’s old output format can be displayed on a terminal by piping through ul(1). Pagers such as
more(1) or less(1) are also able to display these sequences. Use either −B or −U when piping into
less(1); use −b when piping into more(1). There is no need to filter the output through col(1) since
grotty never outputs reverse line feeds.

The font description file may contain a command

internalname n

where n is a decimal integer. If the 01 bit in n is set, then the font is treated as an italic font; if the 02
bit is set, then it is treated as a bold font. The code field in the font description field gives the code
which is used to output the character. This code can also be used in the \N escape sequence in troff.

OPTIONS
−b Suppress the use of overstriking for bold characters. Ignored if −c isn’t used.

−B Use only overstriking for bold-italic characters. Ignored if −c isn’t used.

−c Use grotty’s old output format (see above). This also disables color output.

−d Ignore all \D commands. Without this grotty renders \D’l . . .’ commands that have at least
one zero argument (and so are either horizontal or vertical) using −, |, and + characters. In a
similar way, grotty handles \D’p . . .’ commands which consist entirely of horizontal and verti-
cal lines.

−f Use form feeds in the output. A form feed is output at the end of each page that has no output
on its last line.

Groff Version 1.20 5 January 2009 1

GROTTY(1) GROTTY(1)

−Fdir Prepend directory dir/devname to the search path for font and device description files; name is
the name of the device, usually ascii, latin1, utf8, or cp1047.

−h Use horizontal tabs in the output. Tabs are assumed to be set every 8 columns.

−i Use escape sequences to set the italic text attribute instead of the underline attribute for italic
fonts (‘I’ and ‘BI’). Note that most terminals (including xterm) don’t support this. Ignored if
−c is active.

−o Suppress overstriking (other than for bold or underlined characters in case the old output for-
mat has been activated with −c).

−r Use escape sequences to set the reverse text attribute instead of the underline attribute for italic
fonts (‘I’ and ‘BI’). Ignored if −c is active.

−u Suppress the use of underlining for italic characters. Ignored if −c isn’t used.

−U Use only underlining for bold-italic characters. Ignored if −c isn’t used.

−v Print the version number.

USAGE
grotty understands a single X command produced using the \X escape sequence.

\X’tty: sgr n’
If n is non-zero or missing, enable SGR output (this is the default), otherwise use the old
drawing scheme for bold and underline.

ENVIRONMENT
GROFF_NO_SGR

If set, the old drawing scheme for bold and underline (using the backspace character) is active.
Colors are disabled.

GROFF_FONT_PATH
A list of directories in which to search for the devname directory in addition to the default
ones. See troff(1) and groff_font(5) for more details.

FILES
c:/progra˜1/groff/share/groff/1.20/font/devascii/DESC

Device description file for ascii device.

c:/progra˜1/groff/share/groff/1.20/font/devascii/F
Font description file for font F of ascii device.

c:/progra˜1/groff/share/groff/1.20/font/devlatin1/DESC
Device description file for latin1 device.

c:/progra˜1/groff/share/groff/1.20/font/devlatin1/F
Font description file for font F of latin1 device.

c:/progra˜1/groff/share/groff/1.20/font/devutf8/DESC
Device description file for utf8 device.

c:/progra˜1/groff/share/groff/1.20/font/devutf8/F
Font description file for font F of utf8 device.

c:/progra˜1/groff/share/groff/1.20/font/devcp1047/DESC
Device description file for cp1047 device.

c:/progra˜1/groff/share/groff/1.20/font/devcp1047/F
Font description file for font F of cp1047 device.

c:/progra˜1/groff/share/groff/1.20/tmac/tty.tmac
Macros for use with grotty.

c:/progra˜1/groff/share/groff/1.20/tmac/tty-char.tmac
Additional klugdey character definitions for use with grotty.

Note that on EBCDIC hosts, only files for the cp1047 device is installed.

BUGS
grotty is intended only for simple documents.

Groff Version 1.20 5 January 2009 2

GROTTY(1) GROTTY(1)

There is no support for fractional horizontal or vertical motions.

There is no support for \D commands other than horizontal and vertical lines.

Characters above the first line (ie with a vertical position of 0) cannot be printed.

Color handling is different compared to grops(1). \M doesn’t set the fill color for closed graphic
objects (which grotty doesn’t support anyway) but changes the background color of the character cell,
affecting all subsequent operations.

SEE ALSO
groff(1), troff(1), groff_out(5), groff_font(5), groff_char(7), ul(1), more(1), man(1), less(1)

Groff Version 1.20 5 January 2009 3

HPFTODIT(1) HPFTODIT(1)

HPFTODIT

NAME
hpftodit − create font description files for use with groff −Tlj4

SYNOPSIS
hpftodit [−adqsv] [−in] tfm_file map_file font

It is possible to have whitespace between the −i option and its parameter.

DESCRIPTION
hpftodit creates a font file for use with a Hewlett-Packard LaserJet 4–series (or newer) printer with
groff −Tlj4, using data from an HP tagged font metric (TFM) file. tfm_file is the name of the TFM file
for the font; Intellifont and TrueType TFM files are supported, but symbol set TFM files are not.
map_file is a file giving the groff names for characters in the font; this file should consist of a sequence
of lines of the form:

m u c1 c2 . . . [# comment]

where m is a decimal integer giving the MSL number of the character, u is a hexadecimal integer giving
the Unicode value of the character, and c1, c2, . . . are the groff names of the character. The values can
be separated by any whitespace; the Unicode value must use uppercase digits A–F, and must be with-
out a leading ‘0x’, ‘u’, or ‘U+’. Unicode values corresponding to composite glyphs are decomposed;
e.g., ‘u00C0’ becomes ‘u0041_0300’. The name for a glyph without a groff name may be given as
uXXXX if the glyph corresponds to a Unicode value, or as an unnamed glyph ‘---’. If the given Uni-
code value is in the Private Use Area (0xE000–0xF8FF), the glyph is included as an unnamed glyph.
Refer to groff_diff(1) for additional information about unnamed glyphs and how to access them.

Blank lines and lines beginning with ‘#’ are ignored. A ‘#’ following one or more groff names begins
a comment. Because ‘#’ is a valid groff name, it must appear first in a list of groff names if a comment
is included, e.g.,

3 0023 # # number sign

or

3 0023 # sh # number sign

rather than

3 0023 sh # # number sign

which will treat the first ‘#’ as the beginning of the comment.

font is the name of the groff font file. The groff font file is written to font; if font is specified as ‘-’, the
output is written to the standard output.

The −s option should be given if the font is special (a font is special if troff should search it whenever a
character is not found in the current font). If the font is special, it should be listed in the fonts com-
mand in the DESC file; if it is not special, there is no need to list it, since troff can automatically mount
it when it’s first used.

If the −i option is used, hpftodit automatically will generate an italic correction, a left italic correction
and a subscript correction for each character (the significance of these parameters is explained in
groff_font(5)).

OPTIONS
−a Include characters in the TFM file that are not included in the map file. A glyph with corre-

sponding Unicode value is given the name uXXXX ; a glyph without a Unicode value is
included as an unnamed glyph ‘−−−’. A glyph with a Unicode value in the Private Use Area
(0xE000 – 0xF8FF) also is included as an unnamed glyph.

This option provides a simple means of adding Unicode-named and unnamed glyphs to a font
without including them in the map file, but it affords little control over which glyphs are
placed in a regular font and which are placed in a special font. The presence or absence of the
−s option has some effect on which glyphs are included: without the −s option, only the “text”
symbol sets are searched for matching glyphs; with the −s option, only the “mathematical”
symbol sets are searched. Nonetheless, restricting the symbol sets searched isn’t very
selective—many glyphs are placed in both regular and special fonts. Normally, the −a option

Groff Version 1.20 5 January 2009 1

HPFTODIT(1) HPFTODIT(1)

should be used only as a last resort.

−d Dump information about the TFM file to the standard output; this option can be useful for
ensuring that a TFM file is a proper match for a font, and that the contents of the TFM file are
suitable. The information includes the values of important TFM tags, and a listing (by MSL
number for Intellifont TFM files or by Unicode value for TrueType TFM files) of the glyphs
included in the TFM file. The unit of measure ‘DU’ for some tags indicates design units;
there are 8782 design units per em for Intellifont fonts, and 2048 design units per em for True-
Type fonts. Note that the accessibility of a glyph depends on its inclusion in a symbol set;
some TFM files list many glyphs but only a few symbol sets.

The glyph listing includes the glyph index within the TFM file, the MSL or Unicode value,
and the symbol set and character code that will be used to print the glyph. If map_file is given,
groff names are given for matching glyphs. If only the glyph index and MSL or Unicode
value are given, the glyph does not appear in any supported symbol set and cannot be printed.

With the −d option, map_file is optional, and font is ignored if given.

−q Suppress warnings about characters in the map file that were not found in the TFM file. Warn-
ings never are given for unnamed glyphs or by glyphs named by their Unicode values. This
option is useful when sending the output of hpftodit to the standard output.

−v Print the hpftodit version number.

−s The font is special. This option adds the special command to the font file, and affects the
order in which HP symbol sets are searched for each glyph. Without the −s option, the “text”
sets are searched before the “mathematical” symbol sets. With the −s option, the search order
is reversed.

−in Generate an italic correction for each character so that the character’s width plus the charac-
ter’s italic correction is equal to n thousandths of an em plus the amount by which the right
edge of the character’s bounding is to the right of the character’s origin. If this would result in
a neg ative italic correction, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font
and four fifths of the x-height of the font. If this would result in a subscript correction greater
than the italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each character equal to n thousandths of an em plus
the amount by which the left edge of the character’s bounding box is to the left of the charac-
ter’s origin. The left italic correction may be negative.

This option normally is needed only with italic or oblique fonts; a value of 50 (0.05 em) usu-
ally is a reasonable choice.

FILES
c:/progra 1/groff/share/groff/1.20/font/devlj4/DESC Device description file.

c:/progra 1/groff/share/groff/1.20/font/devlj4/F Font description file for font F .

c:/progra 1/groff/share/groff/1.20/font/devlj4/generate/∗.map Symbol mapping files

SEE ALSO
groff(1), groff_diff(1), grolj4(1), groff_font(5), lj4_font(5)

Groff Version 1.20 5 January 2009 2

INDXBIB(1) INDXBIB(1)

INDXBIB

NAME
indxbib − make inv erted index for bibliographic databases

SYNOPSIS
indxbib [−vw] [−c file] [−ddir] [−f file] [−hn] [−istring] [−kn] [−ln] [−nn] [−o file] [−tn]

[filename . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
indxbib makes an inverted index for the bibliographic databases in filename . . . for use with refer(1),
lookbib(1), and lkbib(1). The index will be named filename.i; the index is written to a temporary file
which is then renamed to this. If no filenames are given on the command line because the −f option has
been used, and no −o option is given, the index will be named Ind.i.

Bibliographic databases are divided into records by blank lines. Within a record, each fields starts with
a % character at the beginning of a line. Fields have a one letter name which follows the % character.

The values set by the −c, −n, −l and −t options are stored in the index; when the index is searched, keys
will be discarded and truncated in a manner appropriate to these options; the original keys will be used
for verifying that any record found using the index actually contains the keys. This means that a user
of an index need not know whether these options were used in the creation of the index, provided that
not all the keys to be searched for would have been discarded during indexing and that the user supplies
at least the part of each key that would have remained after being truncated during indexing. The value
set by the −i option is also stored in the index and will be used in verifying records found using the
index.

OPTIONS
−v Print the version number.

−w Index whole files. Each file is a separate record.

−c file Read the list of common words from file instead of c:/progra 1/groff/share/groff/1.20/eign.

−ddir Use dir as the pathname of the current working directory to store in the index, instead of the
path printed by pwd(1). Usually dir will be a symbolic link that points to the directory printed
by pwd(1).

−f file Read the files to be indexed from file. If file is −, files will be read from the standard input.
The −f option can be given at most once.

−istring

Don’t index the contents of fields whose names are in string. Initially string is XYZ.

−hn Use the first prime greater than or equal to n for the size of the hash table. Larger values of n

will usually make searching faster, but will make the index larger and indxbib use more mem-
ory. Initially n is 997.

−kn Use at most n keys per input record. Initially n is 100.

−ln Discard keys that are shorter than n. Initially n is 3.

−nn Discard the n most common words. Initially n is 100.

−obasename

The index should be named basename.i.

−tn Truncate keys to n. Initially n is 6.

FILES
filename.i Index.

Ind.i Default index name.

c:/progra 1/groff/share/groff/1.20/eign
List of common words.

indxbibXXXXXX Temporary file.

Groff Version 1.20 5 January 2009 1

INDXBIB(1) INDXBIB(1)

SEE ALSO
refer(1), lkbib(1), lookbib(1)

Groff Version 1.20 5 January 2009 2

LKBIB(1) LKBIB(1)

LKBIB

NAME
lkbib − search bibliographic databases

SYNOPSIS
lkbib [−v] [−i fields] [−p filename] [−tn] key . . .

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
lkbib searches bibliographic databases for references that contain the keys key . . . and prints any refer-
ences found on the standard output. lkbib will search any databases given by −p options, and then a
default database. The default database is taken from the REFER environment variable if it is set, other-
wise it is /usr/dict/papers/Ind. For each database filename to be searched, if an index filename.i cre-
ated by indxbib(1) exists, then it will be searched instead; each index can cover multiple databases.

OPTIONS
−v Print the version number.

−p filename

Search filename. Multiple −p options can be used.

−istring

When searching files for which no index exists, ignore the contents of fields whose names are
in string.

−tn Only require the first n characters of keys to be giv en. Initially n is 6.

ENVIRONMENT
REFER Default database.

FILES
/usr/dict/papers/Ind Default database to be used if the REFER environment variable is not set.

filename.i Index files.

SEE ALSO
refer(1), lookbib(1), indxbib(1)

Groff Version 1.20 5 January 2009 1

LOOKBIB(1) LOOKBIB(1)

LOOKBIB

NAME
lookbib − search bibliographic databases

SYNOPSIS
lookbib [−v] [−istring] [−tn] filename . . .

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
lookbib prints a prompt on the standard error (unless the standard input is not a terminal), reads from
the standard input a line containing a set of keywords, searches the bibliographic databases filename . . .
for references containing those keywords, prints any references found on the standard output, and
repeats this process until the end of input. For each database filename to be searched, if an index file-

name.i created by indxbib(1) exists, then it will be searched instead; each index can cover multiple
databases.

OPTIONS
−v Print the version number.

−istring

When searching files for which no index exists, ignore the contents of fields whose names are
in string.

−tn Only require the first n characters of keys to be giv en. Initially n is 6.

FILES
filename.i Index files.

SEE ALSO
refer(1), lkbib(1), indxbib(1)

Groff Version 1.20 5 January 2009 1

MMROFF(1) MMROFF(1)

MMROFF

NAME
mmroff − reference preprocessor

SYNOPSIS
mmroff [-x] groff_arguments

DESCRIPTION
mmroff is a simple preprocessor for groff, it is used for expanding references in mm, see
groff_mm(7). groff is executed twice, first with -z and -rRef=1 to collect all references and then to do
the real processing when the reference file is up to date.

−x Just create the reference file. This can be used to refresh the reference file, it isn’t always
needed to have accurate references and by using this option groff will only be run once.

AUTHOR
Jörgen Hägg, Lund, Sweden <jh@axis.se>.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/m.tmac

c:/progra 1/groff/share/groff/1.20/tmac/mm/∗.cov

c:/progra 1/groff/share/groff/1.20/tmac/mm/∗.MT

c:/progra 1/groff/share/groff/1.20/tmac/mm/locale

SEE ALSO
groff_mm(7), groff_mmse(7), groff(1), troff(1), tbl(1), pic(1), eqn(1)

Groff Version 1.20 5 January 2009 1

NEQN(1) NEQN(1)

NEQN

NAME
neqn − format equations for ascii output

SYNOPSIS
neqn [eqn options]

DESCRIPTION
The neqn program is actually just a shell script which invokes the eqn(1) command with the ascii out-
put device.

Note that eqn does not support low-resolution, typewriter-like devices (although it may work ade-
quately for very simple input).

SEE ALSO
eqn(1)

Groff Version 1.20 5 January 2009 1

NROFF(1) NROFF(1)

NROFF

NAME
nroff − emulate nroff command with groff

SYNOPSIS
[−CchipStUvwW] [−dcs] [−Mdir] [−mname] [−nnum] [−olist] [−rcn] [−Tname] [file . . .] −−help
−v | −−version

DESCRIPTION
The nroff script emulates the nroff command using groff. Only ascii, latin1, utf8, and cp1047 are
devices accepted by nroff to select the output encoding emitted by grotty, groff’s TTY output device.
If neither the GROFF_TYPESETTER environment variable nor the −T command line option (which
overrides the environment variable) specifies a (valid) device, nroff checks the current locale to select a
default output device. It first tries the locale program, then the environment variables LC_ALL,
LC_CTYPE, and LANG, and finally the LESSCHARSET environment variable.

The −h and −c options are equivalent to grotty’s options −h (using tabs in the output) and −c (using the
old output scheme instead of SGR escape sequences). The −d, −C, −i, −M, −m, −n, −o, −r, −w, and
−W options have the effect described in troff(1). In addition, nroff silently ignores the options −e, −q,
and −s (which are not implemented in troff). Options −p (pic), −t (tbl), −S (safer), and −U (unsafe) are
passed to groff. −v and −−version show the version number, −−help prints a help message.

ENVIRONMENT
GROFF_TYPESETTER

The default device for groff. If not set (which is the normal case), it defaults to ‘ps’.

GROFF_BIN_PATH
A colon separated list of directories in which to search for the groff executable before search-
ing in PATH. If unset, ‘c:/progra 1/groff/bin’ is used.

NOTES
This shell script is basically intended for use with man(1). nroff-style character definitions (in the file
tty-char.tmac) are also loaded to emulate unrepresentable glyphs.

SEE ALSO
groff(1), troff(1), grotty(1)

Groff Version 1.20 5 January 2009 1

PDFROFF(1) PDFROFF(1)

PDFROFF

NAME
pdfroff − create PDF documents using groff

SYNOPSIS
[−abcegilpstzCEGNRSUVXZ] [−dcs] [−f fam] [−Fdir] [−Idir] [−Larg] [−mname] [−Mdir]
[−nnum] [−olist] [−Parg] [−rcn] [−Tdev] [−wname] [−Wname] [−−emit−ps] [−−no−toc−relocation]
[−−no-kill−null−pages] [−−stylesheet=name] [−−no−pdf−output] [−−pdf−output=name]
[−−no−reference−dictionary] [−−reference−dictionary=name] [−−report−progress] [−−keep−tem-
porary−files] file . . . −h | −−help −v | −−version [option . . .]

DESCRIPTION
pdfroff is a wrapper program for the GNU text processing system, groff. It transparently handles the
mechanics of multiple pass groff processing, when applied to suitably marked up groff source files,
such that tables of contents and body text are formatted separately, and are subsequently combined in
the correct order, for final publication as a single PDF document. A further optional “style sheet” capa-
bility is provided; this allows for the definition of content which is required to precede the table of con-
tents, in the published document.

For each invocation of pdfroff, the ultimate groff output stream is post-processed by the GhostScript
interpreter, to produce a finished PDF document.

pdfroff makes no assumptions about, and imposes no restrictions on, the use of any groff macro pack-
ages which the user may choose to employ, in order to achieve a desired document format; however, it
does include specific built in support for the pdfmark macro package, should the user choose to
employ it. Specifically, if the pdfhref macro, defined in the pdfmark.tmac package, is used to define
public reference marks, or dynamic links to such reference marks, then pdfroff performs as many pre-
formatting groff passes as required, up to a maximum limit of four, in order to compile a document ref-
erence dictionary, to resolve references, and to expand the dynamically defined content of links.

USAGE
The command line is parsed in accordance with normal GNU conventions, but with one exception —
when specifying any short form option (i.e., a single character option introduced by a single hyphen),
and if that option expects an argument, then it must be specified independently (i.e., it may not be
appended to any group of other single character short form options).

Long form option names (i.e., those introduced by a double hyphen) may be abbreviated to their mini-
mum length unambiguous initial substring.

Otherwise, pdfroff usage closely mirrors that of groff itself. Indeed, with the exception of the −h, −v,
and −T dev short form options, and all long form options, which are parsed internally by pdfroff, all
options and file name arguments specified on the command line are passed on to groff, to control the
formatting of the PDF document. Consequently, pdfroff accepts all options and arguments, as speci-
fied in groff(1), which may also be considered as the definitive reference for all standard pdfroff
options and argument usage.

OPTIONS
pdfroff accepts all of the short form options (i.e., those introduced by a single hyphen), which are
available with groff itself. In most cases, these are simply passed transparently to groff; the following,
however, are handled specially by pdfroff.

−h Same as −−help; see below.

−i Process standard input, after all other specified input files. This is passed transparently to
groff, but, if grouped with other options, it must be the first in the group. Hiding it within a
group breaks standard input processing, in the multiple pass groff processing context of
pdfroff.

−T dev Only −T ps is supported by pdfroff. Attempting to specify any other device causes pdfroff to
abort.

−v Same as −−version; see below.

See groff(1) for a description of all other short form options, which are transparently passed through
pdfroff to groff.

All long form options (i.e., those introduced by a double hyphen) are interpreted locally by pdfroff;

Groff Version 1.20 5 January 2009 1

PDFROFF(1) PDFROFF(1)

they are not passed on to groff, unless otherwise stated below.

−−help Causes pdfroff to display a summary of the its usage syntax, and supported options, and then
exit.

−−emit−ps
Suppresses the final output conversion step, causing pdfroff to emit PostScript output instead
of PDF. This may be useful, to capture intermediate PostScript output, when using a spe-
cialised postprocessor, such as gpresent for example, in place of the default GhostScript PDF
writer.

−−keep−temporary−files
Suppresses the deletion of temporary files, which normally occurs after pdfroff has completed
PDF document formatting; this may be useful, when debugging formatting problems.

See section FILES, for a description of the temporary files used by pdfroff.

−−no−pdf−output
May be used with the −−reference−dictionary=name option (described below) to eliminate
the overhead of PDF formatting, when running pdfroff to create a reference dictionary, for use
in a different document.

−−no−reference−dictionary
May be used to eliminate the overhead of creating a reference dictionary, when it is known
that the target PDF document contains no public references, created by the pdfhref macro.

−−no−toc−relocation
May be used to eliminate the extra groff processing pass, which is required to generate a table
of contents, and relocate it to the start of the PDF document, when processing any document
which lacks an automatically generated table of contents.

−−no−kill−null−pages
While preparing for simulation of the manual collation step, which is traditionally required to
relocate of a table of contents to the start of a document, pdfroff accumulates a number of
empty page descriptions into the intermediate PostScript output stream. During the final colla-
tion step, these empty pages are normally discarded from the finished document; this option
forces pdfroff to leave them in place.

−−pdf−output=name

Specifies the name to be used for the resultant PDF document; if unspecified, the PDF output
is written to standard output. A future version of pdfroff may use this option, to encode the
document name in a generated reference dictionary.

−−reference−dictionary=name

Specifies the name to be used for the generated reference dictionary file; if unspecified, the
reference dictionary is created in a temporary file, which is deleted when pdfroff completes
processing of the current document. This option must be specified, if it is desired to save the
reference dictionary, for use in references placed in other PDF documents.

−−report−progress
Causes pdfroff to display an informational message on standard error, at the start of each
groff processing pass.

−−stylesheet=name

Specifies the name of an input file, to be used as a style sheet for formatting of content, which
is to be placed before the table of contents, in the formatted PDF document.

−−version
Causes pdfroff to display a version identification message. The entire command line is then
passed transparently to groff, in a one pass operation only, in order to display the associated
groff version information, before exiting.

ENVIRONMENT
The following environment variables may be set, and exported, to modify the behaviour of pdfroff.

PDFROFF_COLLATE
Specifies the program to be used for collation of the finshed PDF document.

Groff Version 1.20 5 January 2009 2

PDFROFF(1) PDFROFF(1)

This collation step may be required to move tables of contents to the start of the finished PDF
document, when formatting with traditional macro packages, which print them at the end.
However, users should not normally need to specify PDFROFF_COLLATE, (and indeed, are
not encouraged to do so). If unspecified, pdfroff uses sed(1) by default, which normally suf-
fices.

If PDFROFF_COLLATE is specified, then it must act as a filter, accepting a list of file name
arguments, and write its output to the stdout stream, whence it is piped to the
PDFROFF_POSTPROCESSOR_COMMAND, to produce the finished PDF output.

When specifying PDFROFF_COLLATE, it is normally necessary to also specify
PDFROFF_KILL_NULL_PAGES.

PDFROFF_COLLATE is ignored, if pdfroff is invoked with the −−no−kill−null−pages

option.

PDFROFF_KILL_NULL_PAGES
Specifies options to be passed to the PDFROFF_COLLATE program.

It should not normally be necessary to specify PDFROFF_KILL_NULL_PAGES. The
internal default is a sed(1) script, which is intended to remove completely blank pages from
the collated output stream, and which should be appropriate in most applications of pdfroff.
However, if any alternative to sed(1) is specified for PDFROFF_COLLATE, then it is likely
that a corresponding alternative specification for PDFROFF_KILL_NULL_PAGES is
required.

As in the case of PDFROFF_COLLATE, PDFROFF_KILL_NULL_PAGES is ignored, if
pdfroff is invoked with the −−no−kill−null−pages option.

PDFROFF_POSTPROCESSOR_COMMAND
Specifies the command to be used for the final document conversion from PostScript interme-
diate output to PDF. It must behave as a filter, writing its output to the stdout stream, and must
accept an arbitrary number of files . . . arguments, with the special case of − representing the
stdin stream.

If unspecified, PDFROFF_POSTPROCESSOR_COMMAND defaults to

gs −dBATCH −dQUIET −dNOPAUSE −sDEVICE=pdfwrite −sOutputFile=−

GROFF_TMPDIR
Identifies the directory in which pdfroff should create temporary files. If GROFF_TMPDIR
is not specified, then the variables TMPDIR, TMP and TEMP are considered in turn, as pos-
sible temporary file repositories. If none of these are set, then temporary files are created in
the current directory.

GROFF_GHOSTSCRIPT_INTERPRETER
Specifies the program to be invoked, when pdfroff converts groff PostScript output to PDF. If
PDFROFF_POSTPROCESSOR_COMMAND is specified, then the command name it
specifies is implicitly assigned to GROFF_GHOSTSCRIPT_INTERPRETER, overriding
any explicit setting specified in the environment. If
GROFF_GHOSTSCRIPT_INTERPRETER is not specified, then pdfroff searches the
process PATH, looking for a program with any of the well known names for the GhostScript
interpreter; if no GhostScript interpreter can be found, pdfroff aborts.

GROFF_AWK_INTERPRETER
Specifies the program to be invoked, when pdfroff is extracting reference dictionary entries
from a groff intermediate message stream. If GROFF_AWK_INTERPRETER is not speci-
fied, then pdfroff searches the process PATH, looking for any of the preferred programs,
‘gawk’, ‘mawk’, ‘nawk’ and ‘awk’, in this order; if none of these are found, pdfroff issues a
warning message, and continue processing; however, in this case, no reference dictionary is
created.

OSTYPE
Typically defined automatically by the operating system, OSTYPE is used on Microsoft
Win32/MS-DOS platforms only, to infer the default PATH_SEPARATOR character, which is
used when parsing the process PATH to search for external helper programs.

Groff Version 1.20 5 January 2009 3

PDFROFF(1) PDFROFF(1)

PATH_SEPARATOR
If set, PATH_SEPARATOR overrides the default separator character, (‘:’ on POSIX/UNIX
systems, inferred from OSTYPE on Microsoft Win32/MS-DOS), which is used when parsing
the process PATH to search for external helper programs.

SHOW_PROGRESS
If this is set to a non-empty value, then pdfroff always behaves as if the −−report−progress
option is specified, on the command line.

FILES
Input and output files for pdfroff may be named according to any convention of the user’s choice. Typ-
ically, input files may be named according to the choice of the principal formatting macro package,
e.g., file.ms might be an input file for formatting using the ms macros (s.tmac); normally, the final out-
put file should be named file.pdf.

Temporary files, created by pdfroff, are placed in the directory specified by environment variables (see
section ENVIRONMENT), and named according to the convention pdf$$.∗, where $$ is the standard
shell variable representing the process ID of the pdfroff process itself, and ∗ represents any of the ex-
tensions used by pdfroff to identify the following temporary and intermediate files.

pdf$$.tmp
A scratch pad file, used to capture reference data emitted by groff, during the reference dictio-

nary compilation phase.

pdf$$.ref
The reference dictionary, as compiled in the last but one pass of the reference dictionary com-
pilation phase; (at the start of the first pass, this file is created empty; in successive passes, it
contains the reference dictionary entries, as collected in the preceding pass).

If the −−reference−dictionary=name option is specified, this intermediate file becomes per-
manent, and is named name, rather than pdf$$.ref.

pdf$$.cmp
Used to collect reference dictionary entries during the active pass of the reference dictionary

compilation phase. At the end of any pass, when the content of pdf$$.cmp compares as iden-
tical to pdf$$.ref, (or the corresponding file named by the −−reference−dictionary=name op-
tion), then reference dictionary compilation is terminated, and the document reference map is
appended to this intermediate file, for inclusion in the final formatting passes.

pdf$$.tc
An intermediate PostScript file, in which “Table of Contents” entries are collected, to facilitate
relocation before the body text, on ultimate output to the GhostScript postprocessor.

pdf$$.ps
An intermediate PostScript file, in which the body text is collected prior to ultimate output to
the GhostScript postprocessor, in the proper sequence, after pdf$$.tc.

SEE ALSO
See groff(1) for the definitive reference to document formatting with groff. Since pdfroff provides a
superset of all groff capabilities, groff(1) may also be considered to be the definitive reference to all
standard capabilities of pdfroff, with this document providing the reference to pdfroff’s extended fea-
tures.

While pdfroff imposes neither any restriction on, nor any requirement for, the use of any specific groff
macro package, a number of supplied macro packages, and in particular those associated with the pack-
age pdfmark.tmac, are best suited for use with pdfroff as the preferred formatter. Detailed documen-
tation on the use of these packages may be found, in PDF format, in the reference guide “Portable
Document Format Publishing with GNU Troff ”, included in the installed documentation set as
c:/progra 1/groff/share/doc/groff/1.20/pdf/pdfmark.pdf.

AUTHOR
Copyright © 2005, 2006, 2007, 2009 Free Software Foundation, Inc.

This man page is distributed under the terms of the GNU Free Documentation License (FDL), version
1.3 or later, and is part of the GNU troff software package. It was originally written by Keith Marshall
who also wrote the implementation of the pdfroff program, to which it relates.

Groff Version 1.20 5 January 2009 4

PDFROFF(1) PDFROFF(1)

You should have received a copy of the FDL as part of the GNU troff distribution; it is also available
on−line, at the GNU copyleft site

Groff Version 1.20 5 January 2009 5

PFBTOPS(1) PFBTOPS(1)

PFBTOPS

NAME
pfbtops − translate a PostScript font in .pfb format to ASCII

SYNOPSIS
pfbtops [−v] [pfb_file]

DESCRIPTION
pfbtops translates a PostScript font in .pfb format to ASCII, splitting overlong lines in text packets into
smaller chunks. If pfb_file is omitted the pfb file will be read from the standard input. The ASCII for-
mat PostScript font will be written on the standard output. PostScript fonts for MS-DOS are normally
supplied in .pfb format.

The resulting ASCII format PostScript font can be used with groff. It must first be listed in c:/pro-
gra 1/groff/share/groff/1.20/font/devps/download.

OPTIONS
−v Print the version number.

SEE ALSO
grops(1)

Groff Version 1.20 5 January 2009 1

PIC(1) PIC(1)

PIC

NAME
pic − compile pictures for troff or TeX

SYNOPSIS
pic [−nvCSU] [filename . . .]
pic −t [−cvzCSU] [filename . . .]

DESCRIPTION
This manual page describes the GNU version of pic, which is part of the groff document formatting
system. pic compiles descriptions of pictures embedded within troff or TEX input files into commands
that are understood by TEX or troff. Each picture starts with a line beginning with .PS and ends with a
line beginning with .PE. Anything outside of .PS and .PE is passed through without change.

It is the user’s responsibility to provide appropriate definitions of the PS and PE macros. When the
macro package being used does not supply such definitions (for example, old versions of −ms), appro-
priate definitions can be obtained with −mpic: These will center each picture.

OPTIONS
Options that do not take arguments may be grouped behind a single −. The special option −− can be
used to mark the end of the options. A filename of − refers to the standard input.

−C Recognize .PS and .PE ev en when followed by a character other than space or newline.

−S Safer mode; do not execute sh commands. This can be useful when operating on untrustwor-
thy input. (enabled by default)

−U Unsafe mode; revert the default option −S.

−n Don’t use the groff extensions to the troff drawing commands. You should use this if you are
using a postprocessor that doesn’t support these extensions. The extensions are described in
groff_out(5). The −n option also causes pic not to use zero-length lines to draw dots in troff
mode.

−t TEX mode.

−c Be more compatible with tpic. Implies −t. Lines beginning with \ are not passed through
transparently. Lines beginning with . are passed through with the initial . changed to \. A
line beginning with .ps is given special treatment: it takes an optional integer argument speci-
fying the line thickness (pen size) in milliinches; a missing argument restores the previous line
thickness; the default line thickness is 8 milliinches. The line thickness thus specified takes
effect only when a non-negative line thickness has not been specified by use of the thickness
attribute or by setting the linethick variable.

−v Print the version number.

−z In TEX mode draw dots using zero-length lines.

The following options supported by other versions of pic are ignored:

−D Draw all lines using the \D escape sequence. pic always does this.

−T dev Generate output for the troff device dev. This is unnecessary because the troff output gener-
ated by pic is device-independent.

USAGE
This section describes only the differences between GNU pic and the original version of pic. Many of
these differences also apply to newer versions of Unix pic. A complete documentation is available in
the file

c:/progra 1/groff/share/doc/groff/1.20/pic.ms

TEX mode
TEX mode is enabled by the −t option. In TEX mode, pic will define a vbox called \graph for each pic-
ture. Use the figname command to change the name of the vbox. You must yourself print that vbox
using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero (it is defined with \vtop) this will produce slightly more

Groff Version 1.20 5 January 2009 1

PIC(1) PIC(1)

vertical space above the picture than below it;

\centerline{\raise 1em\box\graph}

would avoid this.

To make the vbox having a positive height and a depth of zero (as used e.g. by LATEX’s graphics.sty),
define the following macro in your document:

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern 0pt}}

Now you can simply say \gpicbox{graph} instead of \box\graph.

You must use a TEX driver that supports the tpic specials, version 2.

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid
unwanted spaces. You can safely use this feature to change fonts or to change the value of \baseline-
skip. Anything else may well produce undesirable results; use at your own risk. Lines beginning with
a period are not given any special treatment.

Commands
for variable = expr1 to expr2 [by [∗]expr3] do X body X

Set variable to expr1. While the value of variable is less than or equal to expr2, do body and
increment variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed
by ∗ then variable will instead be multiplied by expr3. The value of expr3 can be negative for
the additive case; variable is then tested whether it is greater than or equal to expr2. For the
multiplicative case, expr3 must be greater than zero. If the constraints aren’t met, the loop
isn’t executed. X can be any character not occurring in body.

if expr then X if-true X [else Y if-false Y]
Evaluate expr; if it is non-zero then do if-true, otherwise do if-false. X can be any character
not occurring in if-true. Y can be any character not occurring in if-false.

print arg . . .
Concatenate the arguments and print as a line on stderr. Each arg must be an expression, a
position, or text. This is useful for debugging.

command arg . . .
Concatenate the arguments and pass them through as a line to troff or TEX. Each arg must be
an expression, a position, or text. This has a similar effect to a line beginning with . or \, but
allows the values of variables to be passed through. For example,

.PS
x = 14
command ".ds string x is " x "."
.PE
\∗[string]

prints

x is 14.

sh X command X

Pass command to a shell. X can be any character not occurring in command .

copy "filename"
Include filename at this point in the file.

copy ["filename"] thru X body X [until "word"]
copy ["filename"] thru macro [until "word"]

This construct does body once for each line of filename; the line is split into blank-delimited
words, and occurrences of $i in body, for i between 1 and 9, are replaced by the i-th word of
the line. If filename is not given, lines are taken from the current input up to .PE. If an until
clause is specified, lines will be read only until a line the first word of which is word; that line
will then be discarded. X can be any character not occurring in body. For example,

.PS
copy thru % circle at ($1,$2) % until "END"

Groff Version 1.20 5 January 2009 2

PIC(1) PIC(1)

1 2
3 4
5 6
END
box
.PE

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

The commands to be performed for each line can also be taken from a macro defined earlier
by giving the name of the macro as the argument to thru.

reset
reset variable1[,] variable2 . . .

Reset pre-defined variables variable1, variable2 . . . to their default values. If no arguments are
given, reset all pre-defined variables to their default values. Note that assigning a value to
scale also causes all pre-defined variables that control dimensions to be reset to their default
values times the new value of scale.

plot expr ["text"]
This is a text object which is constructed by using text as a format string for sprintf with an
argument of expr. If text is omitted a format string of "%g" is used. Attributes can be speci-
fied in the same way as for a normal text object. Be very careful that you specify an appropri-
ate format string; pic does only very limited checking of the string. This is deprecated in
favour of sprintf.

variable := expr

This is similar to = except variable must already be defined, and expr will be assigned to vari-

able without creating a variable local to the current block. (By contrast, = defines the variable
in the current block if it is not already defined there, and then changes the value in the current
block only.) For example, the following:

.PS
x = 3
y = 3
[
x := 5
y = 5

]
print x " " y
.PE

prints

5 3

Arguments of the form

X anything X

are also allowed to be of the form

{ anything }

In this case anything can contain balanced occurrences of { and }. Strings may contain X or imbal-
anced occurrences of { and }.

Expressions
The syntax for expressions has been significantly extended:

Groff Version 1.20 5 January 2009 3

PIC(1) PIC(1)

x ˆ y (exponentiation)
sin(x)
cos(x)
atan2(y, x)
log(x) (base 10)
exp(x) (base 10, ie 10x)
sqrt(x)
int(x)
rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
srand(x) (set the random number seed)
max(e1, e2)
min(e1, e2)
!e
e1 && e2

e1 || e2

e1 == e2

e1 != e2

e1 >= e2

e1 > e2

e1 <= e2

e1 < e2

"str1" == "str2"
"str1" != "str2"

String comparison expressions must be parenthesised in some contexts to avoid ambiguity.

Other Changes
A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr, where dir is the cur-
rent direction. For example

line 2i

means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ignored; to use
another measurement unit, set the scale variable to an appropriate value.

The maximum width and height of the picture are taken from the variables maxpswid and maxpsht.
Initially these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example

x = 5e−2

Te xt attributes can be compounded. For example,

"foo" above ljust

is valid.

There is no limit to the depth to which blocks can be examined. For example,

[A: [B: [C: box]]] with .A.B.C.sw at 1,2
circle at last [].A.B.C

is acceptable.

Arcs now hav e compass points determined by the circle of which the arc is a part.

Circles, ellipses, and arcs can be dotted or dashed. In TEX mode splines can be dotted or dashed also.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each
corner. If no rad or diam attribute is given, a radius of boxrad is used. Initially, boxrad has a value
of 0. A box with rounded corners can be dotted or dashed.

Boxes can have slanted sides. This effectively changes the shape of a box from a rectangle to an arbi-
trary parallelogram. The xslanted and yslanted attributes specify the x and y offset of the box’s upper
right corner from its default position.

The .PS line can have a second argument specifying a maximum height for the picture. If the width of

Groff Version 1.20 5 January 2009 4

PIC(1) PIC(1)

zero is specified the width will be ignored in computing the scaling factor for the picture. Note that
GNU pic will always scale a picture by the same amount vertically as well as horizontally. This is dif-
ferent from the DWB 2.0 pic which may scale a picture by a different amount vertically than horizon-
tally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object are deter-
mined by this box. The implicit motion associated with the object is also determined by this box. The
dimensions of this box are taken from the width and height attributes; if the width attribute is not sup-
plied then the width will be taken to be textwid; if the height attribute is not supplied then the height
will be taken to be the number of text strings associated with the object times textht. Initially textwid
and textht have a value of 0.

In (almost all) places where a quoted text string can be used, an expression of the form

sprintf(" format", arg,. . .)

can also be used; this will produce the arguments formatted according to format, which should be a
string as described in printf(3) appropriate for the number of arguments supplied.

The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the
thickness of lines in points. A neg ative value means use the default thickness: in TEX output mode, this
means use a thickness of 8 milliinches; in TEX output mode with the -c option, this means use the line
thickness specified by .ps lines; in troff output mode, this means use a thickness proportional to the
pointsize. A zero value means draw the thinnest possible line supported by the output device. Initially
it has a value of -1. There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by
the value of the scale variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners or slanted sides), circles and ellipses can be filled by giv-
ing them an attribute of fill[ed]. This takes an optional argument of an expression with a value between
0 and 1; 0 will fill it with white, 1 with black, values in between with a proportionally gray shade. A
value greater than 1 can also be used: this means fill with the shade of gray that is currently being used
for text and lines. Normally this will be black, but output devices may provide a mechanism for chang-
ing this. Without an argument, then the value of the variable fillval will be used. Initially this has a
value of 0.5. The invisible attribute does not affect the filling of objects. Any text associated with a
filled object will be added after the object has been filled, so that the text will not be obscured by the
filling.

Three additional modifiers are available to specify colored objects: outline[d] sets the color of the out-
line, shaded the fill color, and colo[u]r[ed] sets both. All three keywords expect a suffix specifying the
color, for example

circle shaded "green" outline "black"

Currently, color support isn’t available in TEX mode. Predefined color names for groff are in the device
macro files, for example ps.tmac; additional colors can be defined with the .defcolor request (see the
manual page of troff(1) for more details).

To change the name of the vbox in TEX mode, set the pseudo-variable figname (which is actually a spe-
cially parsed command) within a picture. Example:

.PS
figname = foobar;
...
.PE

The picture is then available in the box \foobar.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and either TEX
mode is enabled or the −n option has not been given. Initially arrowhead has a value of 1. Note that
solid arrow heads are always filled with the current outline color.

The troff output of pic is device-independent. The −T option is therefore redundant. All numbers are
taken to be in inches; numbers are never interpreted to be in troff machine units.

Groff Version 1.20 5 January 2009 5

PIC(1) PIC(1)

Objects can have an aligned attribute. This will only work if the postprocessor is grops. Any text
associated with an object having the aligned attribute will be rotated about the center of the object so
that it is aligned in the direction from the start point to the end point of the object. Note that this
attribute will have no effect for objects whose start and end points are coincident.

In places where nth is allowed ‘expr’th is also allowed. Note that ’th is a single token: no space is
allowed between the ’ and the th. For example,

for i = 1 to 4 do {
line from ‘i’th box.nw to ‘i+1’th box.se

}

CONVERSION
To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and .PE requests; roff
configuration commands may be added at the beginning of the file, but no roff text.

It is necessary to feed this file into groff without adding any page information, so you must check
which .PS and .PE requests are actually called. For example, the mm macro package adds a page num-
ber, which is very annoying. At the moment, calling standard groff without any macro package works.
Alternatively, you can define your own requests, e.g. to do nothing:

.de PS

..

.de PE

..

groff itself does not provide direct conversion into other graphics file formats. But there are lots of
possibilities if you first transform your picture into PostScript® format using the groff option -Tps.
Since this ps-file lacks BoundingBox information it is not very useful by itself, but it may be fed into
other conversion programs, usually named ps2other or pstoother or the like. Moreover, the PostScript
interpreter ghostscript (gs) has built-in graphics conversion devices that are called with the option

gs -sDEVICE=<devname>

Call

gs --help

for a list of the available devices.

As the Encapsulated PostScript File Format EPS is getting more and more important, and the conver-
sion wasn’t reg arded trivial in the past you might be interested to know that there is a conversion tool
named ps2eps which does the right job. It is much better than the tool ps2epsi packaged with gs.

For bitmapped graphic formats, you should use pstopnm; the resulting (intermediate) PNM file can be
then converted to virtually any graphics format using the tools of the netpbm package .

FILES
c:/progra 1/groff/share/groff/1.20/tmac/pic.tmac

Example definitions of the PS and PE macros.

SEE ALSO
troff(1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5)

Tpic: Pic for TEX

Brian W. Kernighan, PIC — A Graphics Language for Typesetting (User Manual). AT&T Bell Labora-
tories, Computing Science Technical Report No. 116 <http://cm.bell-labs.com/cm/cs/cstr/116.ps.gz>
(revised May, 1991).

ps2eps is available from CTAN mirrors, e.g.
<ftp://ftp.dante.de/tex-archive/support/ps2eps/>

W. Richard Stevens - Turning PIC Into HTML
<http://www.kohala.com/start/troff/pic2html.html>

W. Richard Stevens - Examples of picMacros
<http://www.kohala.com/start/troff/pic.examples.ps>

Groff Version 1.20 5 January 2009 6

PIC(1) PIC(1)

BUGS
Input characters that are invalid for groff (i.e., those with ASCII code 0, or 013 octal, or between 015
and 037 octal, or between 0200 and 0237 octal) are rejected even in TEX mode.

The interpretation of fillval is incompatible with the pic in 10th edition Unix, which interprets 0 as
black and 1 as white.

PostScript® is a registered trademark of Adobe Systems Incorporation.

Groff Version 1.20 5 January 2009 7

PIC2GRAPH(1) PIC2GRAPH(1)

PIC2GRAPH

NAME
pic2graph − convert a PIC diagram into a cropped image

SYNOPSIS
pic2graph [−unsafe] [−format fmt] [−eqn delim]

DESCRIPTION
Reads a PIC program as input; produces an image file (by default in Portable Network Graphics for-
mat) suitable for the Web as output. Also translates eqn(1) constructs, so it can be used for generating
images of mathematical formulae.

PIC is a rather expressive graphics minilanguage suitable for producing box-and-arrow diagrams of the
kind frequently used in technical papers and textbooks. The language is sufficiently flexible to be quite
useful for state charts, Petri-net diagrams, flow charts, simple circuit schematics, jumper layouts, and
other kinds of illustration involving repetitive uses of simple geometric forms and splines. Because
PIC descriptions are procedural and object-based, they are both compact and easy to modify.

The PIC language is fully documented in Making Pictures With GNU PIC, a document which is part of
the groff(1) distribution.

Your input PIC code should not be wrapped with the .PS and .PE macros that normally guard it within
groff(1) macros.

The output image will be clipped to the smallest possible bounding box that contains all the black pix-
els. Older versions of convert(1) will produce a black-on-white graphic; newer ones may produce a
black-on-transparent graphic. By specifying command-line options to be passed to convert(1) you can
give it a border, force the background transparent, set the image’s pixel density, or perform other useful
transformations.

This program uses pic(1), eqn(1), groff(1), gs(1), and the ImageMagick convert(1) program. These
programs must be installed on your system and accessible on your $PATH for pic2graph to work.

OPTIONS
−unsafe

Run pic(1) and groff(1) in the ‘unsafe’ mode enabling the PIC macro sh to execute arbitrary
commands. The default is to forbid this.

−format fmt

Specify an output format; the default is PNG (Portable Network Graphics). Any format that
convert(1) can emit is supported.

−eqn delim

Change the fencepost characters that delimit eqn(1) directives ($ and $, by default). This
option requires an argument, but an empty string is accepted as a directive to disable eqn(1)
processing.

Command-line switches and arguments not listed above are passed to convert(1).

FILES
c:/progra 1/groff/share/groff/1.20/tmac/eqnrc The eqn(1) initialization file.

ENVIRONMENT
GROFF_TMPDIR

The directory in which temporary files will be created. If this is not set pic2graph searches
the environment variables TMPDIR, TMP, and TEMP (in that order). Otherwise, temporary
files will be created in /tmp.

BUGS
Due to changes in the behavior of ImageMagick convert(1) that are both forward and backward-incom-
patible, mismatches between your pic2graph and convert(1) versions may produce zero-sized or
untrimmed output images. For this version of pic2graph you will need a version of convert(1) that
supports the −trim option; older versions of pic2graph used −crop 0x0, which no longer has trimming
behavior.

SEE ALSO
eqn2graph(1), grap2graph(1), pic(1), eqn(1), groff(1), gs(1), convert(1).

Groff Version 1.20 5 January 2009 1

PIC2GRAPH(1) PIC2GRAPH(1)

AUTHOR
Eric S. Raymond <esr@thyrsus.com>, based on a recipe by W. Richard Stevens.

Groff Version 1.20 5 January 2009 2

PRAG(1) PRAG(1)

PRAG

NAME
prag − compile diagrams for pic

SYNOPSIS
prag [filename . . .]

DESCRIPTION
.G1 [width [height]]
.G2

prag recognizes its input only between .G1 and .G2. All other lines are copied literal to stan-
dard output. Tw o optional arguments to .G1 specify the width and the height.

comment

Lines starting with a hash mark ’#’ are treated as comments.
draw line-style

The draw statement sets the line style for drawing the graphs. Valid arguments are the line
styles as known from pic(1) or the pseudo-style marked. marked will yield a solid graph
with the data points marked. Up to five default marking characters (\(bu •, \(∗D ∆, \(pl +, \(sq

, \(mu ×) are used for the first five graphs. If you don’t like these characters, you can over-
ride them by giving an additional drawing character to each data point (as second or third
argument). Use line style invis to draw unconnected data points.

new [line-style] name [label-string]]]
This statement switches a new graph within a diagram. The line style of the graph is set to
line-style. The graph gets the name name, which can be referred in subsequent pic statements
and is labeled with the string label-string. label-string can be any valid pic string.

label [left | right | top | bot] label-string

label-string is placed at the specified side of the whole diagram.
ticks [left | right | top | bot] [where] position . . .

Tick marks for the specified side are placed at the given positions. where says to place the
ticks inside (in) or outside (out) the diagram.

ticks [left | right | top | bot] [where] from begin to end [by step]
This second variant of the tick-statement allows the automatic generation of ticks in the
range from begin to end with an optional distance step.

frame frame-attributes . . .
The frame-attributes are given to the box, that builds the frame of the diagram. Valid pic box
attributes can be used. The internal name of the diagram frame is FRAME and of the surround-
ing box GRAPH. Both can be used in pic statements to get special effects. The boxes for the
top, left, right and bottom margin are TMARG, LMARG, RMARG and BMARG.

spline
nospline

spline forces prag to use splines for drawing graphs, which is the default. nospline will
use pic’s line directives respectively.

range xmin ymin xmax ymax

Graphs are drawn within the range specified.
ht number

Sets the height of the diagram to number.
wid number

Sets the width of the diagram to number.
grid [line-style]

Draws a grid of line-style, dotted per default.
pic { anything }

Anything is passed literally through pic.
next [graph-name] [at] position

Sets a new data point for graph graph-name or the current graph at position position.
position

Position is described by an y coordinate and an optional x coordinate. If the x coordinate is
missing, then x is assumed to be 0, 1, 2, 3, etc.

position drawing-char

For each data point an optional (as second or third argument respectively) drawing character

1 August 1993 1

PRAG(1) PRAG(1)

can be declared. Any troff and eqn character or special character or sequence of characters
can be used.

EXAMPLES
Example 1

frame invis
pic { line from FRAME.sw to FRAME.se }
pic { line from FRAME.sw to FRAME.nw }
draw invis
0 \&
2.9 NY
7.8 NJ
3.4 CA
1.8 MI
3.7 FL

will produce:

2

4

6

8

1 2 3 4
•

NY

NJ

CA

MI

FL

Example 2

wid 4
ht 3
grid dotted
label left "execution" "time / sec"
label bot "# of msgs"
range 0 0 5000 25
ticks left 0 5 10 15 20 25
ticks right 0 5 10 15 20 25
ticks top 0 1000 2000 3000 4000 5000
ticks bot 0 1000 2000 3000 4000 5000
new marked MSG "\s-2MSG\s+2" above
100 0.19 \(∗D
...
next TLITCP at 5000 20.09 \(mu
3000 18.08 \(mu
4000 19.12 \(mu

will produce:

1 August 1993 2

PRAG(1) PRAG(1)

execution
time / sec

of msgs

0

5

10

15

20

25

0

5

10

15

20

25
0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

∆ ∆ ∆ ∆
∆ ∆

∆
MSG

•

•

•

•

•

•

•

SOCKUDP

TLIUDP

× × ×
×

×
×

×
TLITCP

Example 3

grid dotted
draw marked
100 0.19
...
5000 3.69
new marked
0 0
400 0.45
...
5000 3.5

will produce:

1

2

3

4

1000 2000 3000 4000

•
•

•

•

•

•

•

∆

∆ ∆

∆ ∆

∆

∆

Example 4

label left "execution time" "seconds"
label right "\(ua message size"
label bot "messages sent"

1 August 1993 3

PRAG(1) PRAG(1)

range 0 0 10000 25
ticks left 0 5 10 15 20 25
ticks bot 0 1000 5000 10000
100 1.3
...
10000 24.6

will produce:

execution time
seconds

↑ message size

messages sent

0

5

10

15

20

25

0 1000 5000 10000

Example 5

label bot "time (in seconds)"
label left "memory" "available"
range 0 0 365 1800
ticks left 200 400 600 800 1000 1200 1400 1600
ticks bot 40 80 120 160 200 240 280 320 360
new
0 141
...
365 1309
new dashed
nospline
0 12
150 247
...
new dashed
nospline
210 824
360 1508

will produce:

memory
available

time (in seconds)

200

400

600

800

1000

1200

1400

1600

40 80 120 160 200 240 280 320 360

Example 6

1 August 1993 4

PRAG(1) PRAG(1)

draw invis
1896 54.2
1900 49.4
...
1988 43.8

will produce:

43

46

49

52

1914 1933 1952 1971

•

• •
•

•
•

•

•

•

• •

•

•

•
•

Example 6

40 72
45 76
...
65 79

will produce:

74

78

82

86

45 50 55 60
SEE ALSO

AT&T Bell Laboratories, Computing Science Technical Report No. 116, GRAP − A Graphics Lan-
guage for Typesetting. This can be obtained by sending a mail message to netlib@research.att.com
with a body of ‘send 116 from research/cstr’.

BUGS
Bug reports or suggested improvements should go to hm@GUUG.de.

AUTHOR
This program was contributed by Holger Meyer at University of Rostock, Germany. It is available via
anonymous ftp from ftp.informatik.uni-rostock.de in the directory /pub/local/software.

1 August 1993 5

PRECONV(1) PRECONV(1)

PRECONV

NAME
preconv − convert encoding of input files to something GNU troff understands

SYNOPSIS
[−dr] [−eencoding] [files . . .] −h | −−help −v | −−version

It is possible to have whitespace between the −e command line option and its parameter.

DESCRIPTION
preconv reads files and converts its encoding(s) to a form GNU troff(1) can process, sending the data
to standard output. Currently, this means ASCII characters and ‘\[uXXXX]’ entities, where ‘XXXX’ is
a hexadecimal number with four to six digits, representing a Unicode input code. Normally, preconv
should be invoked with the −k and −K options of groff.

OPTIONS
−d Emit debugging messages to standard error (mainly the used encoding).

−Dencoding

Specify default encoding if everything fails (see below).

−eencoding

Specify input encoding explicitly, overriding all other methods. This corresponds to groff’s
−Kencoding option. Without this switch, preconv uses the algorithm described below to
select the input encoding.

−−help
−h Print help message.

−r Do not add .lf requests.

−−version
−v Print version number.

USAGE
preconv tries to find the input encoding with the following algorithm.

1. If the input encoding has been explicitly specified with option −e, use it.

2. Otherwise, check whether the input starts with a Byte Order Mark (BOM, see below). If
found, use it.

3. Finally, check whether there is a known coding tag (see below) in either the first or second
input line. If found, use it.

4. If ev erything fails, use a default encoding as given with option −D, by the current locale, or
‘latin1’ if the locale is set to ‘C’, ‘POSIX’, or empty (in that order).

Note that the groff program supports a GROFF_ENCODING environment variable which is eventu-
ally expanded to option −k.

Byte Order Mark
The Unicode Standard defines character U+FEFF as the Byte Order Mark (BOM). On the other hand,
value U+FFFE is guaranteed not be a Unicode character at all. This allows to detect the byte order
within the data stream (either big-endian or lower-endian), and the MIME encodings ‘UTF-16’ and
‘UTF-32’ mandate that the data stream starts with U+FEFF. Similarly, the data stream encoded as
‘UTF-8’ might start with a BOM (to ease the conversion from and to UTF-16 and UTF-32). In all
cases, the byte order mark is not part of the data but part of the encoding protocol; in other words, pre-
conv’s output doesn’t contain it.

Note that U+FEFF not at the start of the input data actually is emitted; it has then the meaning of a
‘zero width no-break space’ character – something not needed normally in groff.

Coding Tags
Editors which support more than a single character encoding need tags within the input files to mark
the file’s encoding. While it is possible to guess the right input encoding with the help of heuristic
algorithms for data which represents a greater amount of a natural language, it is still just a guess.
Additionally, all algorithms fail easily for input which is either too short or doesn’t represent a natural
language.

Groff Version 1.20 5 January 2009 1

PRECONV(1) PRECONV(1)

For these reasons, preconv supports the coding tag convention (with some restrictions) as used by
GNU Emacs and XEmacs (and probably other programs too).

Coding tags in GNU Emacs and XEmacs are stored in so-called File Variables. preconv recognizes
the following syntax form which must be put into a troff comment in the first or second line.

−∗− tag1: value1; tag2: value2; . . . −∗−

The only relevant tag for preconv is ‘coding’ which can take the values listed below. Here an example
line which tells Emacs to edit a file in troff mode, and to use latin2 as its encoding.

.\" −∗− mode: troff; coding: latin-2 −∗−

The following list gives all MIME coding tags (either lowercase or uppercase) supported by preconv;
this list is hard-coded in the source.

big5, cp1047, euc-jp, euc-kr, gb2312, iso-8859-1, iso-8859-2, iso-8859-5, iso-8859-7,
iso-8859-9, iso-8859-13, iso-8859-15, koi8-r, us-ascii, utf-8, utf-16, utf-16be, utf-16le

In addition, the following hard-coded list of other tags is recognized which eventually map to values
from the list above.

ascii, chinese-big5, chinese-euc, chinese-iso-8bit, cn-big5, cn-gb, cn-gb-2312, cp878, csascii,
csisolatin1, cyrillic-iso-8bit, cyrillic-koi8, euc-china, euc-cn, euc-japan, euc-japan-1990,
euc-korea, greek-iso-8bit, iso-10646/utf8, iso-10646/utf-8, iso-latin-1, iso-latin-2, iso-latin-5,
iso-latin-7, iso-latin-9, japanese-euc, japanese-iso-8bit, jis8, koi8, korean-euc, korean-iso-8bit,
latin-0, latin1, latin-1, latin-2, latin-5, latin-7, latin-9, mule-utf-8, mule-utf-16, mule-utf-16be,
mule-utf-16-be, mule-utf-16be-with-signature, mule-utf-16le, mule-utf-16-le,
mule-utf-16le-with-signature, utf8, utf-16-be, utf-16-be-with-signature,
utf-16be-with-signature, utf-16-le, utf-16-le-with-signature, utf-16le-with-signature

Those tags are taken from GNU Emacs and XEmacs, together with some aliases. Trailing ‘-dos’,
‘-unix’, and ‘-mac’ suffixes of coding tags (which give the end-of-line convention used in the file) are
stripped off before the comparison with the above tags happens.

Iconv Issues
preconv by itself only supports three encodings: latin-1, cp1047, and UTF-8; all other encodings are
passed to the iconv library functions. At compile time it is searched and checked for a valid iconv
implementation; a call to ‘preconv −−version’ shows whether iconv is used.

BUGS
preconv doesn’t support local variable lists yet. This is a different syntax form to specify local vari-
ables at the end of a file.

SEE ALSO
groff(1)
the GNU Emacs and XEmacs info pages

Groff Version 1.20 5 January 2009 2

REFER(1) REFER(1)

REFER

NAME
refer − preprocess bibliographic references for groff

SYNOPSIS
refer [−benvCPRS] [−an] [−c fields] [−fn] [−i fields] [−k field] [−lm,n] [−pfilename]

[−s fields] [−tn] [−B field.macro] [filename . . .]

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
This file documents the GNU version of refer, which is part of the groff document formatting system.
refer copies the contents of filename . . . to the standard output, except that lines between .[and .] are
interpreted as citations, and lines between .R1 and .R2 are interpreted as commands about how cita-
tions are to be processed.

Each citation specifies a reference. The citation can specify a reference that is contained in a biblio-
graphic database by giving a set of keywords that only that reference contains. Alternatively it can
specify a reference by supplying a database record in the citation. A combination of these alternatives
is also possible.

For each citation, refer can produce a mark in the text. This mark consists of some label which can be
separated from the text and from other labels in various ways. For each reference it also outputs groff
commands that can be used by a macro package to produce a formatted reference for each citation.
The output of refer must therefore be processed using a suitable macro package. The −ms and −me
macros are both suitable. The commands to format a citation’s reference can be output immediately
after the citation, or the references may be accumulated, and the commands output at some later point.
If the references are accumulated, then multiple citations of the same reference will produce a single
formatted reference.

The interpretation of lines between .R1 and .R2 as commands is a new feature of GNU refer. Docu-
ments making use of this feature can still be processed by Unix refer just by adding the lines

.de R1

.ig R2

..
to the beginning of the document. This will cause troff to ignore everything between .R1 and .R2.
The effect of some commands can also be achieved by options. These options are supported mainly for
compatibility with Unix refer. It is usually more convenient to use commands.

refer generates .lf lines so that filenames and line numbers in messages produced by commands that
read refer output will be correct; it also interprets lines beginning with .lf so that filenames and line
numbers in the messages and .lf lines that it produces will be accurate even if the input has been pre-
processed by a command such as soelim(1).

OPTIONS
Most options are equivalent to commands (for a description of these commands see the Commands
subsection):

−b no-label-in-text; no-label-in-reference

−e accumulate

−n no-default-database

−C compatible

−P move-punctuation

−S label "(A.n|Q) ’, ’ (D.y|D)"; bracket-label " (") "; "

−an re verse An

−c fields

capitalize fields

−fn label %n

Groff Version 1.20 5 January 2009 1

REFER(1) REFER(1)

−i fields

search-ignore fields

−k label L~%a

−k field label field~%a

−l label A.nD.y%a

−lm label A.n+mD.y%a

−l,n label A.nD.y−n%a

−lm,n label A.n+mD.y−n%a

−p filename

database filename

−sspec sort spec

−tn search-truncate n

These options are equivalent to the following commands with the addition that the filenames specified
on the command line are processed as if they were arguments to the bibliography command instead of
in the normal way:

−B annotate X AP; no-label-in-reference

−B field .macro

annotate field macro; no-label-in-reference

The following options have no equivalent commands:

−v Print the version number.

−R Don’t recognize lines beginning with .R1/.R2.

USAGE
Bibliographic databases

The bibliographic database is a text file consisting of records separated by one or more blank lines.
Within each record fields start with a % at the beginning of a line. Each field has a one character name
that immediately follows the %. It is best to use only upper and lower case letters for the names of
fields. The name of the field should be followed by exactly one space, and then by the contents of the
field. Empty fields are ignored. The conventional meaning of each field is as follows:

A The name of an author. If the name contains a title such as Jr. at the end, it should be sepa-
rated from the last name by a comma. There can be multiple occurrences of the A field. The
order is significant. It is a good idea always to supply an A field or a Q field.

B For an article that is part of a book, the title of the book.

C The place (city) of publication.

D The date of publication. The year should be specified in full. If the month is specified, the
name rather than the number of the month should be used, but only the first three letters are
required. It is a good idea always to supply a D field; if the date is unknown, a value such as
in press or unknown can be used.

E For an article that is part of a book, the name of an editor of the book. Where the work has
editors and no authors, the names of the editors should be given as A fields and , (ed) or , (eds)
should be appended to the last author.

G US Government ordering number.

I The publisher (issuer).

J For an article in a journal, the name of the journal.

K Ke ywords to be used for searching.

L Label.

N Journal issue number.

Groff Version 1.20 5 January 2009 2

REFER(1) REFER(1)

O Other information. This is usually printed at the end of the reference.

P Page number. A range of pages can be specified as m−n.

Q The name of the author, if the author is not a person. This will only be used if there are no A
fields. There can only be one Q field.

R Technical report number.

S Series name.

T Title. For an article in a book or journal, this should be the title of the article.

V Volume number of the journal or book.

X Annotation.

For all fields except A and E, if there is more than one occurrence of a particular field in a record, only
the last such field will be used.

If accent strings are used, they should follow the character to be accented. This means that the AM
macro must be used with the −ms macros. Accent strings should not be quoted: use one \ rather than
two.

Citations
The format of a citation is

.[opening-text

flags keywords

fields

.]closing-text

The opening-text, closing-text and flags components are optional. Only one of the keywords and fields

components need be specified.

The keywords component says to search the bibliographic databases for a reference that contains all the
words in keywords. It is an error if more than one reference if found.

The fields components specifies additional fields to replace or supplement those specified in the refer-
ence. When references are being accumulated and the keywords component is non-empty, then addi-
tional fields should be specified only on the first occasion that a particular reference is cited, and will
apply to all citations of that reference.

The opening-text and closing-text component specifies strings to be used to bracket the label instead of
the strings specified in the bracket-label command. If either of these components is non-empty, the
strings specified in the bracket-label command will not be used; this behaviour can be altered using
the [and] flags. Note that leading and trailing spaces are significant for these components.

The flags component is a list of non-alphanumeric characters each of which modifies the treatment of
this particular citation. Unix refer will treat these flags as part of the keywords and so will ignore them
since they are non-alphanumeric. The following flags are currently recognized:

This says to use the label specified by the short-label command, instead of that specified by
the label command. If no short label has been specified, the normal label will be used. Typi-
cally the short label is used with author-date labels and consists of only the date and possibly a
disambiguating letter; the # is supposed to be suggestive of a numeric type of label.

[Precede opening-text with the first string specified in the bracket-label command.

] Follow closing-text with the second string specified in the bracket-label command.

One advantages of using the [and] flags rather than including the brackets in opening-text and closing-

text is that you can change the style of bracket used in the document just by changing the bracket-label
command. Another advantage is that sorting and merging of citations will not necessarily be inhibited
if the flags are used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[line. If there is no
such line, then an extra line will be inserted before the .[line and a warning will be given.

There is no special notation for making a citation to multiple references. Just use a sequence of cita-
tions, one for each reference. Don’t put anything between the citations. The labels for all the citations
will be attached to the line preceding the first citation. The labels may also be sorted or merged. See

Groff Version 1.20 5 January 2009 3

REFER(1) REFER(1)

the description of the <> label expression, and of the sort-adjacent-labels and abbreviate-label-
ranges command. A label will not be merged if its citation has a non-empty opening-text or closing-

text. Howev er, the labels for a citation using the] flag and without any closing-text immediately fol-
lowed by a citation using the [flag and without any opening-text may be sorted and merged even
though the first citation’s opening-text or the second citation’s closing-text is non-empty. (If you wish
to prevent this just make the first citation’s closing-text \&.)

Commands
Commands are contained between lines starting with .R1 and .R2. Recognition of these lines can be
prevented by the −R option. When a .R1 line is recognized any accumulated references are flushed
out. Neither .R1 nor .R2 lines, nor anything between them is output.

Commands are separated by newlines or ;s. # introduces a comment that extends to the end of the line
(but does not conceal the newline). Each command is broken up into words. Words are separated by
spaces or tabs. A word that begins with " extends to the next " that is not followed by another ". If
there is no such " the word extends to the end of the line. Pairs of " in a word beginning with " col-
lapse to a single ". Neither # nor ; are recognized inside "s. A line can be continued by ending it with
\; this works everywhere except after a #.

Each command name that is marked with ∗ has an associated negative command no-name that undoes
the effect of name. For example, the no-sort command specifies that references should not be sorted.
The negative commands take no arguments.

In the following description each argument must be a single word; field is used for a single upper or
lower case letter naming a field; fields is used for a sequence of such letters; m and n are used for a non-
negative numbers; string is used for an arbitrary string; filename is used for the name of a file.

abbreviate∗ fields string1 string2 string3 string4

Abbreviate the first names of fields. An initial letter will be separated from
another initial letter by string1, from the last name by string2, and from
anything else (such as a von or de) by string3. These default to a period
followed by a space. In a hyphenated first name, the initial of the first part
of the name will be separated from the hyphen by string4; this defaults to a
period. No attempt is made to handle any ambiguities that might result
from abbreviation. Names are abbreviated before sorting and before label
construction.

abbreviate-label-ranges∗ string

Three or more adjacent labels that refer to consecutive references will be
abbreviated to a label consisting of the first label, followed by string fol-
lowed by the last label. This is mainly useful with numeric labels. If string

is omitted it defaults to −.

accumulate∗ Accumulate references instead of writing out each reference as it is encoun-
tered. Accumulated references will be written out whenever a reference of
the form

.[
$LIST$
.]

is encountered, after all input files have been processed, and whenever .R1
line is recognized.

annotate∗ field string field is an annotation; print it at the end of the reference as a paragraph pre-
ceded by the line

.string

If string is omitted it will default to AP; if field is also omitted it will
default to X. Only one field can be an annotation.

articles string . . . string . . . are definite or indefinite articles, and should be ignored at the
beginning of T fields when sorting. Initially, the, a and an are recognized
as articles.

Groff Version 1.20 5 January 2009 4

REFER(1) REFER(1)

bibliography filename . . .
Write out all the references contained in the bibliographic databases file-

name . . . This command should come last in a .R1/.R2 block.

bracket-label string1 string2 string3

In the text, bracket each label with string1 and string2. An occurrence of
string2 immediately followed by string1 will be turned into string3. The
default behaviour is

bracket-label \∗([. \∗(.] ", "

capitalize fields Convert fields to caps and small caps.

compatible∗ Recognize .R1 and .R2 ev en when followed by a character other than space
or newline.

database filename . . . Search the bibliographic databases filename . . . For each filename if an
index filename.i created by indxbib(1) exists, then it will be searched
instead; each index can cover multiple databases.

date-as-label∗ string string is a label expression that specifies a string with which to replace the
D field after constructing the label. See the Label expressions subsection
for a description of label expressions. This command is useful if you do not
want explicit labels in the reference list, but instead want to handle any nec-
essary disambiguation by qualifying the date in some way. The label used
in the text would typically be some combination of the author and date. In
most cases you should also use the no-label-in-reference command. For
example,

date-as-label D.+yD.y%a∗D.-y

would attach a disambiguating letter to the year part of the D field in the
reference.

default-database∗ The default database should be searched. This is the default behaviour, so
the negative version of this command is more useful. refer determines
whether the default database should be searched on the first occasion that it
needs to do a search. Thus a no-default-database command must be given
before then, in order to be effective.

discard∗ fields When the reference is read, fields should be discarded; no string definitions
for fields will be output. Initially, fields are XYZ.

et-al∗ string m n Control use of et al in the evaluation of @ expressions in label expressions.
If the number of authors needed to make the author sequence unambiguous
is u and the total number of authors is t then the last t − u authors will be
replaced by string provided that t − u is not less than m and t is not less than
n. The default behaviour is

et-al " et al" 2 3

include filename Include filename and interpret the contents as commands.

join-authors string1 string2 string3

This says how authors should be joined together. When there are exactly
two authors, they will be joined with string1. When there are more than
two authors, all but the last two will be joined with string2, and the last two
authors will be joined with string3. If string3 is omitted, it will default to
string1; if string2 is also omitted it will also default to string1. For exam-
ple,

join-authors " and " ", " ", and "

will restore the default method for joining authors.

label-in-reference∗ When outputting the reference, define the string [F to be the reference’s
label. This is the default behaviour; so the negative version of this
command is more useful.

Groff Version 1.20 5 January 2009 5

REFER(1) REFER(1)

label-in-text∗ For each reference output a label in the text. The label will be separated
from the surrounding text as described in the bracket-label command.
This is the default behaviour; so the negative version of this command is
more useful.

label string string is a label expression describing how to label each reference.

separate-label-second-parts string

When merging two-part labels, separate the second part of the second label
from the first label with string. See the description of the <> label expres-
sion.

move-punctuation∗ In the text, move any punctuation at the end of line past the label. It is usu-
ally a good idea to give this command unless you are using superscripted
numbers as labels.

re verse∗ string Reverse the fields whose names are in string. Each field name can be fol-
lowed by a number which says how many such fields should be reversed. If
no number is given for a field, all such fields will be reversed.

search-ignore∗ fields While searching for keys in databases for which no index exists, ignore the
contents of fields. Initially, fields XYZ are ignored.

search-truncate∗ n Only require the first n characters of keys to be giv en. In effect when
searching for a given key words in the database are truncated to the maxi-
mum of n and the length of the key. Initially n is 6.

short-label∗ string string is a label expression that specifies an alternative (usually shorter)
style of label. This is used when the # flag is given in the citation. When
using author-date style labels, the identity of the author or authors is some-
times clear from the context, and so it may be desirable to omit the author
or authors from the label. The short-label command will typically be used
to specify a label containing just a date and possibly a disambiguating let-
ter.

sort∗ string Sort references according to string. References will automatically be accu-
mulated. string should be a list of field names, each followed by a number,
indicating how many fields with the name should be used for sorting. + can
be used to indicate that all the fields with the name should be used. Also .
can be used to indicate the references should be sorted using the (tentative)
label. (The Label expressions subsection describes the concept of a tenta-
tive label.)

sort-adjacent-labels∗ Sort labels that are adjacent in the text according to their position in the ref-
erence list. This command should usually be given if the abbreviate-label-
ranges command has been given, or if the label expression contains a <>
expression. This will have no effect unless references are being accumu-
lated.

Label expressions
Label expressions can be evaluated both normally and tentatively. The result of normal evaluation is
used for output. The result of tentative evaluation, called the tentative label, is used to gather the infor-
mation that normal evaluation needs to disambiguate the label. Label expressions specified by the
date-as-label and short-label commands are not evaluated tentatively. Normal and tentative evaluation
are the same for all types of expression other than @, ∗, and % expressions. The description below
applies to normal evaluation, except where otherwise specified.

field

field n The n-th part of field . If n is omitted, it defaults to 1.

’string’ The characters in string literally.

@ All the authors joined as specified by the join-authors command. The whole of each author’s
name will be used. However, if the references are sorted by author (that is the sort specifica-
tion starts with A+), then authors’ last names will be used instead, provided that this does not
introduce ambiguity, and also an initial subsequence of the authors may be used instead of all

Groff Version 1.20 5 January 2009 6

REFER(1) REFER(1)

the authors, again provided that this does not introduce ambiguity. The use of only the last
name for the i-th author of some reference is considered to be ambiguous if there is some
other reference, such that the first i - 1 authors of the references are the same, the i-th authors
are not the same, but the i-th authors’ last names are the same. A proper initial subsequence
of the sequence of authors for some reference is considered to be ambiguous if there is a refer-
ence with some other sequence of authors which also has that subsequence as a proper initial
subsequence. When an initial subsequence of authors is used, the remaining authors are
replaced by the string specified by the et-al command; this command may also specify addi-
tional requirements that must be met before an initial subsequence can be used. @ tentatively
evaluates to a canonical representation of the authors, such that authors that compare equally
for sorting purpose will have the same representation.

%n

%a
%A
%i
%I The serial number of the reference formatted according to the character following the %. The

serial number of a reference is 1 plus the number of earlier references with same tentative
label as this reference. These expressions tentatively evaluate to an empty string.

expr∗ If there is another reference with the same tentative label as this reference, then expr, other-
wise an empty string. It tentatively evaluates to an empty string.

expr+n

expr−n The first (+) or last (−) n upper or lower case letters or digits of expr. Troff special characters
(such as \(’a) count as a single letter. Accent strings are retained but do not count towards the
total.

expr.l expr converted to lowercase.

expr.u expr converted to uppercase.

expr.c expr converted to caps and small caps.

expr.r expr reversed so that the last name is first.

expr.a expr with first names abbreviated. Note that fields specified in the abbreviate command are
abbreviated before any labels are evaluated. Thus .a is useful only when you want a field to be
abbreviated in a label but not in a reference.

expr.y The year part of expr.

expr.+y
The part of expr before the year, or the whole of expr if it does not contain a year.

expr.−y
The part of expr after the year, or an empty string if expr does not contain a year.

expr.n The last name part of expr.

expr1~expr2

expr1 except that if the last character of expr1 is − then it will be replaced by expr2.

expr1 expr2

The concatenation of expr1 and expr2.

expr1|expr2

If expr1 is non-empty then expr1 otherwise expr2.

expr1&expr2

If expr1 is non-empty then expr2 otherwise an empty string.

expr1?expr2:expr3

If expr1 is non-empty then expr2 otherwise expr3.

<expr> The label is in two parts, which are separated by expr. Two adjacent two-part labels which
have the same first part will be merged by appending the second part of the second label onto
the first label separated by the string specified in the separate-label-second-parts command
(initially, a comma followed by a space); the resulting label will also be a two-part label with

Groff Version 1.20 5 January 2009 7

REFER(1) REFER(1)

the same first part as before merging, and so additional labels can be merged into it. Note that
it is permissible for the first part to be empty; this maybe desirable for expressions used in the
short-label command.

(expr) The same as expr. Used for grouping.

The above expressions are listed in order of precedence (highest first); & and | have the same prece-
dence.

Macro interface
Each reference starts with a call to the macro]-. The string [F will be defined to be the label for this
reference, unless the no-label-in-reference command has been given. There then follows a series of
string definitions, one for each field: string [X corresponds to field X . The number register [P is set to 1
if the P field contains a range of pages. The [T, [A and [O number registers are set to 1 according as
the T, A and O fields end with one of the characters .?!. The [E number register will be set to 1 if the
[E string contains more than one name. The reference is followed by a call to the][macro. The first
argument to this macro gives a number representing the type of the reference. If a reference contains a
J field, it will be classified as type 1, otherwise if it contains a B field, it will type 3, otherwise if it con-
tains a G or R field it will be type 4, otherwise if contains a I field it will be type 2, otherwise it will be
type 0. The second argument is a symbolic name for the type: other, journal-article, book, article-in-
book or tech-report. Groups of references that have been accumulated or are produced by the bibliog-
raphy command are preceded by a call to the]< macro and followed by a call to the]> macro.

FILES
/usr/dict/papers/Ind Default database.

file.i Index files.

ENVIRONMENT
REFER If set, overrides the default database.

SEE ALSO
indxbib(1), lookbib(1), lkbib(1)

BUGS
In label expressions, <> expressions are ignored inside .char expressions.

Groff Version 1.20 5 January 2009 8

roff2dvi(1) roff2dvi(1)

roff2dvi

NAME
roff2dvi − transform roff code into dvi mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2dvi transforms roff code into dvi mode. Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2html(1)
generates html output.

roff2pdf(1)
outputs pdf mode.

roff2ps(1)
prints PostScript format to standard output.

roff2text(1)
generates text output in the groff device latin1.

roff2x(1)
prints the output in the groff device X that is suitable for programs like gxditview(1) or
xditview(1).

SEE ALSO
groff(1), groffer(1), roff2html(1), roff2pdf(1), roff2ps(1), roff2text(1), roff2x(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

roff2html(1) roff2html(1)

roff2html

NAME
roff2html − transform roff code into html mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2html transforms roff code into html mode. Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2dvi(1)
is for dvi mode.

roff2pdf(1)
outputs pdf mode.

roff2ps(1)
prints PostScript format to standard output.

roff2text(1)
generates text output in the groff device latin1.

roff2x(1)
prints the output in the groff device X that is suitable for programs like gxditview(1) or
xditview(1).

SEE ALSO
groff(1), groffer(1), roff2dvi(1), roff2pdf(1), roff2ps(1), roff2text(1), roff2x(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

roff2pdf(1) roff2pdf(1)

roff2pdf

NAME
roff2pdf − transform roff code into pdf mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2pdf transforms roff code into pdf mode. Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2dvi(1)
is for dvi mode.

roff2html(1)
generates html output.

roff2ps(1)
prints PostScript format to standard output.

roff2text(1)
generates text output in the groff device latin1.

roff2x(1)
prints the output in the groff device X that is suitable for programs like gxditview(1) or
xditview(1).

SEE ALSO
groff(1), groffer(1), roff2dvi(1), roff2html(1), roff2ps(1), roff2text(1), roff2x(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

roff2ps(1) roff2ps(1)

roff2ps

NAME
roff2ps − transform roff code into ps mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2ps transforms roff code into ps mode. Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2dvi(1)
is for dvi mode.

roff2html(1)
generates html output.

roff2pdf(1)
outputs pdf mode.

roff2text(1)
generates text output in the groff device latin1.

roff2x(1)
prints the output in the groff device X that is suitable for programs like gxditview(1) or
xditview(1).

SEE ALSO
groff(1), groffer(1), roff2dvi(1), roff2html(1), roff2pdf(1), roff2text(1), roff2x(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

roff2text(1) roff2text(1)

roff2text

NAME
roff2text − transform roff code into text mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2text transforms roff code into text mode. Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2dvi(1)
is for dvi mode.

roff2html(1)
generates html output.

roff2pdf(1)
outputs pdf mode.

roff2ps(1)
prints PostScript format to standard output.

roff2x(1)
prints the output in the groff device X that is suitable for programs like gxditview(1) or
xditview(1).

SEE ALSO
groff(1), groffer(1), roff2dvi(1), roff2html(1), roff2pdf(1), roff2ps(1), roff2x(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

roff2x(1) roff2x(1)

roff2x

NAME
roff2x − transform roff code into x mode

SYNOPSIS
[groffer_option. . .] [−−] [filespec. . .] −h | −−help −v | −−version

The options −v and −−version print the version information of the program to standard output and exit.
The options −h and −−help print a usage information of the program to standard output and stop the
program instantly.

All other options are assumed to be groffer options. They are internally passed to groffer. They over-
ride the behavior of the program. The options are optional, they can be omitted.

The filespec arguments correspond to the filespec arguments of groffer. So they are either the names of
existing, readable files or − for standard input, or the name of a man page or a groffer(1) man page
search pattern. If no filespec is specified standard input is assumed automatically.

DESCRIPTION
roff2x transforms roff code into X mode corresponding to the groff devices X∗; this mode is suitable for
gxditview(1). Print the result to standard output.

There are more of these programs for generating other formats of roff input.

roff2dvi(1)
is for dvi mode.

roff2html(1)
generates html output.

roff2pdf(1)
outputs pdf mode.

roff2ps(1)
prints PostScript format to standard output.

roff2text(1)
generates text output in the groff device latin1.

SEE ALSO
groff(1), groffer(1), roff2dvi(1), roff2html(1), roff2pdf(1), roff2ps(1), roff2text(1), gxditview(1).

AUTHOR
This file was written by Bernd Warken.

COPYING
Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.

This file is part of groffer, which is part of groff , a free software project. You can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2, or (at your option) any later version.

You should have received a copy of the GNU General Public License along with groff , see
the files COPYING and LICENSE in the top directory of the groff source package. Or read the
man page gpl(1). You can also write to the Free Software Foundation, 51 Franklin St - Fifth Floor,
Boston, MA 02110-1301, USA.

Groff Version 1.20 7 January 2009 1

SOELIM(1) SOELIM(1)

SOELIM

NAME
soelim − interpret .so requests in groff input

SYNOPSIS
[−Crtv] [−Idir] [files . . .]

It is possible to have whitespace between the −I command line option and its parameter.

DESCRIPTION
soelim reads files and replaces lines of the form

.so file

by the contents of file. It is useful if files included with .so need to be preprocessed. Normally, soelim
should be invoked with the −s option of groff.

To embed ‘\’ in the file name, write ‘\\’ or ‘\e’. To embed a space, write ‘\ ’. Any other escape
sequence in file makes soelim ignore the whole line.

Note that there must be no whitespace between the leading dot and the two characters ‘s’ and ‘o’. Oth-
erwise, only groff interprets the .so request (and soelim ignores it).

OPTIONS
−C Recognize .so ev en when followed by a character other than space or newline.

−Idir This option may be used to add a directory to the search path for files (both those on the com-
mand line and those named in .so requests). The search path is initialized with the current
directory. This option may be specified more than once; the directories are then searched in
the order specified (but before the current directory). If you want to make the current direc-
tory be read before other directories, add −I. at the appropriate place.

No directory search is performed for files with an absolute file name.

−r Do not add .lf requests (for general use, with non-groff files).

−t Don’t emit .lf requests but TeX comment lines (starting with ‘%’) giving the current file and
line number.

−v Print the version number.

USAGE
The normal processing sequence of groff is this:

input
file

preprocessor troff

sourced
file

postprocessor

output
file

That is, files sourced with .so are normally read only by troff (the actual formatter). soelim is not

required for troff to source files.

If a file to be sourced should also be preprocessed, it must already be read before the input file passes
through the preprocessor. This is handled by soelim:

input
file

soelim preprocessor troff postprocessor
Groff Version 1.20 5 January 2009 1

SOELIM(1) SOELIM(1)

SEE ALSO
groff(1)

Groff Version 1.20 5 January 2009 2

TBL(1) TBL(1)

TBL

NAME
tbl − format tables for troff

SYNOPSIS
[−Cv] [files . . .]

DESCRIPTION
This manual page describes the GNU version of tbl, which is part of the groff document formatting
system. tbl compiles descriptions of tables embedded within troff input files into commands that are
understood by troff. Normally, it should be invoked using the −t option of groff. It is highly compati-
ble with Unix tbl. The output generated by GNU tbl cannot be processed with Unix troff; it must be
processed with GNU troff. If no files are given on the command line or a filename of − is given, the
standard input is read.

OPTIONS
−C Enable compatibility mode to recognize .TS and .TE ev en when followed by a character other

than space or newline. Leader characters (\a) are handled as interpreted.

−v Print the version number.

USAGE
tbl expects to find table descriptions wrapped in the .TS (table start) and .TE (table end) macros.

Global options
The line immediately following the .TS macro may contain any of the following global options (ignor-
ing the case of characters – Unix tbl only accepts options with all characters lowercase or all characters
uppercase), separated by spaces, tabs, or commas:

allbox Enclose each item of the table in a box.

box Enclose the table in a box.

center Center the table (default is left-justified). The alternative keyword name centre is also recog-
nized (this is a GNU tbl extension).

decimalpoint(c)
Set the character to be recognized as the decimal point in numeric columns (GNU tbl only).

delim(xy)
Use x and y as start and end delimiters for eqn(1).

doublebox
Enclose the table in a double box.

doubleframe
Same as doublebox (GNU tbl only).

expand
Make the table as wide as the current line length (providing a column separation factor).
Ignored if one or more ‘x’ column specifiers are used (see below).

In case the sum of the column widths is larger than the current line length, the column separa-
tion factor is set to zero; such tables extend into the right margin, and there is no column sepa-
ration at all.

frame Same as box (GNU tbl only).

linesize(n)
Set lines or rules (e.g. from box) in n-point type.

nokeep Don’t use diversions to prevent page breaks (GNU tbl only). Normally tbl attempts to prevent
undesirable breaks in boxed tables by using diversions. This can sometimes interact badly
with macro packages’ own use of diversions, when footnotes, for example, are used.

nospaces
Ignore leading and trailing spaces in data items (GNU tbl only).

tab(x) Use the character x instead of a tab to separate items in a line of input data.

The global options must end with a semicolon. There might be whitespace between an option and its

Groff Version 1.20 5 January 2009 1

TBL(1) TBL(1)

argument in parentheses.

Table format specification
After global options come lines describing the format of each line of the table. Each such format line
describes one line of the table itself, except that the last format line (which you must end with a period)
describes all remaining lines of the table. A single-key character describes each column of each line of
the table. Ke y characters can be separated by spaces or tabs. You may run format specifications for
multiple lines together on the same line by separating them with commas.

You may follow each key character with specifiers that determine the font and point size of the corre-
sponding item, that determine column width, inter-column spacing, etc.

The longest format line defines the number of columns in the table; missing format descriptors at the
end of format lines are assumed to be L. Extra columns in the data (which have no corresponding for-
mat entry) are ignored.

The available key characters are:

a,A Center longest line in this column and then left-justifies all other lines in this column with
respect to that centered line. The idea is to use such alphabetic subcolumns (hence the name
of the key character) in combination with L; they are called subcolumns because A items are
indented by 1n relative to L entries. Example:

.TS tab(;); ln,an. item one;1 subitem two;2 subitem three;3 .T& ln,an. item
eleven;11 subitem twentytwo;22 subitem thirtythree;33 .TE

Result:

item one 1
subitem two 2
subitem three 3

item eleven 11
subitem twentytwo 22
subitem thirtythree 33

c,C Center item within the column.

l,L Left-justify item within the column.

n,N Numerically justify item in the column: Units positions of numbers are aligned vertically. If
there is one or more dots adjacent to a digit, use the rightmost one for vertical alignment. If
there is no dot, use the rightmost digit for vertical alignment; otherwise, center the item within
the column. Alignment can be forced to a certain position using ‘\&’; if there is one or more
instances of this special (non-printing) character present within the data, use the leftmost one
for alignment. Example:

.TS n. 1 1.5 1.5.3 abcde a\&bcde .TE

Result:

1
1.5

1.5.3
abcde
abcde

If numerical entries are combined with L or R entries – this can happen if the table format is
changed with .T& –, center the widest number (of the data entered under the N specifier
regime) relative to the widest L or R entry, preserving the alignment of all numerical entries.
Contrary to A type entries, there is no extra indentation.

Using equations (to be processed with eqn) within columns which use the N specifier is prob-
lematic in most cases due to tbl’s algorithm for finding the vertical alignment, as described
above. Using the global delim option, however, it is possible to make tbl ignore the data
within eqn delimiters for that purpose.

r,R Right-justify item within the column.

Groff Version 1.20 5 January 2009 2

TBL(1) TBL(1)

s,S Span previous item on the left into this column. Not allowed for the first column.

ˆ Span down entry from previous row in this column. Not allowed for the first row.

_,- Replace this entry with a horizontal line.

= Replace this entry with a double horizontal line.

| The corresponding column becomes a vertical rule (if two of these are adjacent, a double ver-
tical rule).

A vertical bar to the left of the first key letter or to the right of the last one produces a line at the edge of
the table.

To change the data format within a table, use the .T& command (at the start of a line). It is followed by
format and data lines (but no global options) similar to the .TS request.

Column specifiers
Here are the specifiers that can appear in suffixes to column key letters (in any order):

b,B Short form of fB (make affected entries bold).

d,D Start an item vertically spanning rows at the bottom of its range rather than vertically center-
ing it (GNU tbl only).

e,E Make equally-spaced columns. All columns marked with this specifier get the same width;
this happens after the affected column widths have been computed (this means that the largest
width value rules).

f,F Either of these specifiers may be followed by a font name (either one or two characters long),
font number (a single digit), or long name in parentheses (the last form is a GNU tbl exten-
sion). A one-letter font name must be separated by one or more blanks from whatever fol-
lows.

i,I Short form of fI (make affected entries italic).

m,M This is a GNU tbl extension. Either of these specifiers may be followed by a macro name
(either one or two characters long), or long name in parentheses. A one-letter macro name
must be separated by one or more blanks from whatever follows. The macro which name can
be specified here must be defined before creating the table. It is called just before the table’s
cell text is output. As implemented currently, this macro is only called if block input is used,
that is, text between ‘T{’ and ‘T}’. The macro should contain only simple troff requests to
change the text block formatting, like text adjustment, hyphenation, size, or font. The macro
is called after other cell modifications like b, f or v are output. Thus the macro can overwrite
other modification specifiers.

p,P Followed by a number, this does a point size change for the affected fields. If signed, the cur-
rent point size is incremented or decremented (using a signed number instead of a signed digit
is a GNU tbl extension). A point size specifier followed by a column separation number must
be separated by one or more blanks.

t,T Start an item vertically spanning rows at the top of its range rather than vertically centering it.

u,U Move the corresponding column up one half-line.

v,V Followed by a number, this indicates the vertical line spacing to be used in a multi-line table
entry. If signed, the current vertical line spacing is incremented or decremented (using a
signed number instead of a signed digit is a GNU tbl extension). A vertical line spacing speci-
fier followed by a column separation number must be separated by one or more blanks. No
effect if the corresponding table entry isn’t a text block.

w,W Minimal column width value. Must be followed either by a troff(1) width expression in
parentheses or a unitless integer. If no unit is given, en units are used. Also used as the
default line length for included text blocks. If used multiple times to specify the width for a
particular column, the last entry takes effect.

x,X An expanded column. After computing all column widths without an x specifier, use the
remaining line width for this column. If there is more than one expanded column, distribute
the remaining horizontal space evenly among the affected columns (this is a GNU extension).
This feature has the same effect as specifying a minimum column width.

Groff Version 1.20 5 January 2009 3

TBL(1) TBL(1)

z,Z Ignore the corresponding column for width-calculation purposes, this is, don’t use the fields
but only the specifiers of this column to compute its width.

A number suffix on a key character is interpreted as a column separation in en units (multiplied in pro-
portion if the expand option is on – in case of overfull tables this might be zero). Default separation is
3n.

The column specifier x is mutually exclusive with e and w (but e is not mutually exclusive with w); if
specified multiple times for a particular column, the last entry takes effect: x unsets both e and w, while
either e or w overrides x.

Table data
The format lines are followed by lines containing the actual data for the table, followed finally by .TE.
Within such data lines, items are normally separated by tab characters (or the character specified with
the tab option). Long input lines can be broken across multiple lines if the last character on the line is
‘\’ (which vanishes after concatenation).

Note that tbl computes the column widths line by line, applying \w on each entry which isn’t a text
block. As a consequence, constructions like

.TS c,l. \s[20]MM MMMM .TE

fail; you must either say

.TS cp20,lp20. MM MMMM .TE

or

.TS c,l. \s[20]MM \s[20]MMMM .TE

A dot starting a line, followed by anything but a digit is handled as a troff command, passed through
without changes. The table position is unchanged in this case.

If a data line consists of only ‘_’ or ‘=’, a single or double line, respectively, is drawn across the table at
that point; if a single item in a data line consists of only ‘_’ or ‘=’, then that item is replaced by a single
or double line, joining its neighbours. If a data item consists only of ‘_’ or ‘\=’, a single or double
line, respectively, is drawn across the field at that point which does not join its neighbours.

A data item consisting only of ‘\Rx’ (‘x’ any character) is replaced by repetitions of character ‘x’ as
wide as the column (not joining its neighbours).

A data item consisting only of ‘\ˆ’ indicates that the field immediately above spans downward over this
row.

Text blocks
A text block can be used to enter data as a single entry which would be too long as a simple string
between tabs. It is started with ‘T{’ and closed with ‘T}’. The former must end a line, and the latter
must start a line, probably followed by other data columns (separated with tabs or the character given
with the tab global option).

By default, the text block is formatted with the settings which were active before entering the table,
possibly overridden by the m, v, and w tbl specifiers. For example, to make all text blocks ragged-
right, insert .na right before the starting .TS (and .ad after the table).

If either ‘w’ or ‘x’ specifiers are not given for all columns of a text block span, the default length of the
text block (to be more precise, the line length used to process the text block diversion) is computed as
L×C/(N+1), where ‘L’ is the current line length, ‘C’ the number of columns spanned by the text block,
and ‘N’ the total number of columns in the table. Note, however, that the actual diversion width as
returned in register \n[dl] is used eventually as the text block width. If necessary, you can also control
the text block width with a direct insertion of a .ll request right after ‘T{’.

Miscellaneous
The number register \n[TW] holds the table width; it can’t be used within the table itself but is defined
right before calling .TE so that this macro can make use of it.

tbl also defines a macro .T# which produces the bottom and side lines of a boxed table. While tbl does
call this macro itself at the end of the table, it can be used by macro packages to create boxes for multi-
page tables by calling it within the page footer. An example of this is shown by the −ms macros which
provide this functionality if a table starts with .TS H instead of the standard call to the .TS macro.

Groff Version 1.20 5 January 2009 4

TBL(1) TBL(1)

INTERACTION WITH EQN
tbl(1) should always be called before eqn(1) (groff(1) automatically takes care of the correct order of
preprocessors).

GNU TBL ENHANCEMENTS
There is no limit on the number of columns in a table, nor any limit on the number of text blocks. All
the lines of a table are considered in deciding column widths, not just the first 200. Table continuation
(.T&) lines are not restricted to the first 200 lines.

Numeric and alphabetic items may appear in the same column.

Numeric and alphabetic items may span horizontally.

tbl uses register, string, macro and diversion names beginning with the digit 3. When using tbl you
should avoid using any names beginning with a 3.

GNU TBL WITHIN MACROS
Since tbl defines its own macros (right before each table) it is necessary to use an ‘end-of-macro’
macro. Additionally, the escape character has to be switched off. Here an example.

.eo .de ATABLE .. .TS allbox tab(;); cl. \$1;\$2 .TEec .ATABLE A table .ATABLE
Another table .ATABLE And "another one"

Note, however, that not all features of tbl can be wrapped into a macro because tbl sees the input ear-
lier than troff. For example, number formatting with vertically aligned decimal points fails if those
numbers are passed on as macro parameters because decimal point alignment is handled by tbl itself: It
only sees ‘\$1’, ‘\$2’, etc., and therefore can’t recognize the decimal point.

BUGS
You should use .TS H/.TH in conjunction with a supporting macro package for all multi-page boxed
tables. If there is no header that you wish to appear at the top of each page of the table, place the .TH
line immediately after the format section. Do not enclose a multi-page table within keep/release
macros, or divert it in any other way.

A text block within a table must be able to fit on one page.

The bp request cannot be used to force a page-break in a multi-page table. Instead, define BP as fol-
lows

.de BP . ie ’\\n(.z’’ .bp \\$1 . el \!.BP \\$1 ..

and use BP instead of bp.

Using \a directly in a table to get leaders does not work (except in compatibility mode). This is correct
behaviour: \a is an uninterpreted leader. To get leaders use a real leader, either by using a control A or
like this:

.ds a \a .TS tab(;); lw(1i) l. A\∗a;B .TE

REFERENCE
Lesk, M.E.: "TBL – A Program to Format Tables". For copyright reasons it cannot be included in the
groff distribution, but copies can be found with a title search on the World Wide Web.

SEE ALSO
groff(1), troff(1)

Groff Version 1.20 5 January 2009 5

TFMTODIT(1) TFMTODIT(1)

TFMTODIT

NAME
tfmtodit − create font files for use with groff −Tdvi

SYNOPSIS
tfmtodit [−sv] [−ggf_file] [−kskewchar] tfm_file map_file font

It is possible to have whitespace between a command line option and its parameter.

DESCRIPTION
tfmtodit creates a font file for use with groff −Tdvi. tfm_file is the name of the TEX font metric file for
the font. map_file is a file giving the groff names for characters in the font; this file should consist of a
sequence of lines of the form:

n c1 c2 . . .

where n is a decimal integer giving the position of the character in the font, and c1, c2,. . . are the groff
names of the character. If a character has no groff names but exists in the tfm file, then it will be put in
the groff font file as an unnamed character. font is the name of the groff font file. The groff font file is
written to font.

The −s option should be given if the font is special (a font is special if troff should search it whenever a
character is not found in the current font.) If the font is special, it should be listed in the fonts com-
mand in the DESC file; if it is not special, there is no need to list it, since troff can automatically mount
it when it’s first used.

To do a good job of math typesetting, groff requires font metric information not present in the tfm file.
The reason for this is that TEX has separate math italic fonts whereas groff uses normal italic fonts for
math. The additional information required by groff is giv en by the two arguments to the math_fit
macro in the Metafont programs for the Computer Modern fonts. In a text font (a font for which
math_fitting is false), Metafont normally ignores these two arguments. Metafont can be made to put
this information in the gf file by loading the following definition after cmbase when creating cm.base:

def ignore_math_fit(expr left_adjustment,right_adjustment) =
special "adjustment";
numspecial left_adjustment∗16/designsize;
numspecial right_adjustment∗16/designsize;
enddef;

For the EC font family, load the following definition after exbase (it is probably easiest to patch
exbase.mf locally):

def ignore_math_fit(expr left_adjustment,right_adjustment) =
ori_special "adjustment";
ori_numspecial left_adjustment∗16/designsize;
ori_numspecial right_adjustment∗16/designsize;
enddef;

The gf file created using this modified cm.base or exbase should be specified with the −g option. The
−g option should not be given for a font for which math_fitting is true.

OPTIONS
−v Print the version number.

−s The font is special. The effect of this option is to add the special command to the font file.

−kn The skewchar of this font is at position n. n should be an integer; it may be given in decimal,
or with a leading 0 in octal, or with a leading 0x in hexadecimal. The effect of this option is to
ignore any kerns whose second component is the specified character.

−ggf_file

gf_file is a gf file produced by Metafont containing special and numspecial commands giving
additional font metric information.

FILES

Groff Version 1.20 5 January 2009 1

TFMTODIT(1) TFMTODIT(1)

c:/progra 1/groff/share/groff/1.20/font/devdvi/DESC
Device description file.

c:/progra 1/groff/share/groff/1.20/font/devdvi/F
Font description file for font F .

SEE ALSO
groff(1), grodvi(1), groff_font(5)

Groff Version 1.20 5 January 2009 2

TR2TEX(1) TR2TEX(1)

TR2TEX

NAME
tr2latex − convert a document from troff to LaTeX

SYNOPSIS
tr2latex [−m] [−t] [−n] [−s style] [−o outfile] filename...

DESCRIPTION
Tr2latex converts a document typeset in troff to a LaTeX format. It is intended to do the first pass of
the conversion. The user should then finish up the rest of the conversion and customize the converted
manuscript to his/her liking. It can also serve as a tutor for those who want to convert from troff to
LaTeX.

Most of the converted document will be in LaTeX but some of it may be in plain TeX. It will also use
some macros in troffms.sty or troffman.sty which are included in the package and must be available
to the document when processed with LaTeX.

If there is more than one input file, they will all be converted into one LaTeX document.

Tr2latex understands most of the -ms and -man macros and eqn preprocessor symbols. It also under-
stands several plain troff commands. Few tbl preprocessor commands are understood to help convert
very simple tables.

When converting manuals, use the -m flag. Otherwise tr2latex assumes to translate a -me input file.

If a troff command cannot be converted, the line that contain that command will be commented out.

NOTE: if you have eqn symbols, you must have the in-line mathematics delimiter defined by delim in
the file you are converting. If it is defined in another setup file, that setup file has to be concatenated
with the file to be converted, otherwise tr2latex will regard the in-line math as ordinary text.

OPTIONS
−m Convert manual pages. This makes tr2latex understand most of the -man macros. It

uses the style file troffman.sty.

−t Produce twoside page style.

−n Use a font size of npt. The default font size is 12pt for −man and 11pt otherwise.

−s style Use the style file style instead of the default article.sty.

−o outfile Write output to file outfile.

BUGS
Many of these bugs are harmless. Most of them cause local errors that can be fixed in the converted
manuscript.

− Some macros and macro arguments are not recognized.

− Commands that are not separated from their argument by a space are not properly parsed (e.g .sp3i).

− When some operators (notably over, sub and sup) are renamed (via define), then they are encountered
in the text, tr2latex will treat them as ordinary macros and will not apply their rules.

− rpile, lpile and cpile are treated the same as cpile.

− rcol, lcol are treated the same as ccol.

− Math-mode size, gsize, fat, and gfont are ignored.

− lineup and mark are ignored. The rules are so different.

− Some troff commands are translated to commands that require delimiters that have to be explicitly
put. Since they are sometimes not put in troff, they can create problems. Example: .nf not closed by .fi.

− When local motions are converted to \raise or \lower, an \hbox is needed, which has to be put manu-
ally after the conversion.

− ’a sub i sub j’ is converted to ’a_i_j’ which TeX parses as ’a_i{}_j}’ with a complaint that it is vague.
’a sub {i sub j}’ is parsed correctly and converted to ’a_{i_j}’.

− Line spacing is not changed within a paragraph in TeX (which is a bad practice anyway). TeX uses
the last line spacing in effect in that paragraph.

14 June 1991 1

TR2TEX(1) TR2TEX(1)

TODO
Access registers via .nr command.

FILES
$(TEXLIB)/macros/troffman.sty
$(TEXLIB)/macros/troffms.sty

AUTHOR
Kamal Al-Yahya, Stanford University
Christian Engel, Aachen University of Technology’

14 June 1991 2

TROFF(1) TROFF(1)

TROFF

NAME
troff − the troff processor of the groff text formatting system

SYNOPSIS
[−abcivzCERU] [−dcs] [−f fam] [−Fdir] [−Idir] [−mname] [−Mdir] [−nnum] [−olist]
[−rcn] [−Tname] [−wname] [−Wname] [file . . .]

DESCRIPTION
This manual page describes the GNU version of troff. It is part of the groff document formatting sys-
tem. It is functionally compatible with UNIX troff, but has many extensions, see groff_diff(7). Usu-
ally it should be invoked using the groff(1) command which will also run preprocessors and postpro-
cessors in the appropriate order and with the appropriate options.

OPTIONS
It is possible to have whitespace between a command line option and its parameter.

−a Generate an ASCII approximation of the typeset output.

−b Print a backtrace with each warning or error message. This backtrace should help track
down the cause of the error. The line numbers given in the backtrace may not always be
correct, for troff’s idea of line numbers gets confused by as or am requests.

−c Disable color output (always disabled in compatibility mode).

−C Enable compatibility mode.

−dcs

−dname=s Define c or name to be a string s; c must be a one letter name.

−E Inhibit all error messages of troff. Note that this doesn’t affect messages output to stan-
dard error by macro packages using the tm or tm1 requests.

−f fam Use fam as the default font family.

−Fdir Search in directory (or directory path) dir for subdirectories devname (name is the name
of the device) and there for the DESC file and font files. dir is scanned before all other
font directories.

−i Read the standard input after all the named input files have been processed.

−Idir This option may be used to add a directory to the search path for files (both those on the
command line and those named in .psbb requests). The search path is initialized with the
current directory. This option may be specified more than once; the directories are then
searched in the order specified (but before the current directory). If you want to make the
current directory be read before other directories, add −I. at the appropriate place.

No directory search is performed for files with an absolute file name.

−mname Read in the file name.tmac. If it isn’t found, try tmac.name instead. It will be first
searched for in directories given with the −M command line option, then in directories
given in the GROFF_TMAC_PATH environment variable, then in the current directory
(only if in unsafe mode), the home directory, c:/progra 1/groff/lib/groff/site-tmac, c:/pro-
gra 1/groff/share/groff/site-tmac, and c:/progra 1/groff/share/groff/1.20/tmac.

−Mdir Search directory (or directory path) dir for macro files. This is scanned before all other
macro directories.

−nnum Number the first page num.

−olist Output only pages in list, which is a comma-separated list of page ranges; n means print
page n, m−n means print every page between m and n, −n means print every page up to n,
n− means print every page from n. troff will exit after printing the last page in the list.

−rcn

−rname=n Set number register c or name to n; c must be a one character name; n can be any troff
numeric expression.

−R Don’t load troffrc and troffrc-end.

Groff Version 1.20 5 January 2009 1

TROFF(1) TROFF(1)

−Tname Prepare output for device name, rather than the default ps; see groff(1) for a more detailed
description.

−U Unsafe mode. This will enable the following requests: open, opena, pso, sy, and pi. For
security reasons, these potentially dangerous requests are disabled otherwise. It will also
add the current directory to the macro search path.

−v Print the version number.

−wname Enable warning name. Available warnings are described in the section WARNINGS below.
For example, to enable all warnings, use −w all. Multiple −w options are allowed.

−Wname Inhibit warning name. Multiple −W options are allowed.

−z Suppress formatted output.

WARNINGS
The warnings that can be given by troff are divided into the following categories. The name associated
with each warning is used by the −w and −W options; the number is used by the warn request, and by
the .warn register; it is always a power of 2 to allow bitwise composition.

Bit Code Warning Bit Code Warning
0 1 char 10 1024 reg
1 2 number 11 2048 tab
2 4 break 12 4096 right-brace
3 8 delim 13 8192 missing
4 16 el 14 16384 input
5 32 scale 15 32768 escape
6 64 range 16 65536 space
7 128 syntax 17 131072 font
8 256 di 18 262144 ig
9 512 mac 19 524288 color

break 4 In fill mode, lines which could not be broken so that their length was less than
the line length. This is enabled by default.

char 1 Non-existent characters. This is enabled by default.

color 524288 Color related warnings.

delim 8 Missing or mismatched closing delimiters.

di 256 Use of di or da without an argument when there is no current diversion.

el 16 Use of the el request with no matching ie request.

escape 32768 Unrecognized escape sequences. When an unrecognized escape sequence is
encountered, the escape character is ignored.

font 131072 Non-existent fonts. This is enabled by default.

ig 262144 Invalid escapes in text ignored with the ig request. These are conditions that are
errors when they do not occur in ignored text.

input 16384 Invalid input characters.

mac 512 Use of undefined strings, macros and diversions. When an undefined string,
macro or diversion is used, that string is automatically defined as empty. So, in
most cases, at most one warning will be given for each name.

missing 8192 Requests that are missing non-optional arguments.

number 2 Inv alid numeric expressions. This is enabled by default.

range 64 Out of range arguments.

reg 1024 Use of undefined number registers. When an undefined number register is used,
that register is automatically defined to have a value of 0. So, in most cases, at
most one warning will be given for use of a particular name.

right-brace 4096 Use of \} where a number was expected.

Groff Version 1.20 5 January 2009 2

TROFF(1) TROFF(1)

scale 32 Meaningless scaling indicators.

space 65536 Missing space between a request or macro and its argument. This warning will
be given when an undefined name longer than two characters is encountered,
and the first two characters of the name make a defined name. The request or
macro will not be invoked. When this warning is given, no macro is automati-
cally defined. This is enabled by default. This warning will never occur in
compatibility mode.

syntax 128 Dubious syntax in numeric expressions.

tab 2048 Inappropriate use of a tab character. Either use of a tab character where a num-
ber was expected, or use of tab character in an unquoted macro argument.

There are also names that can be used to refer to groups of warnings:

all All warnings except di, mac, and reg. It is intended that this covers all warnings that are use-
ful with traditional macro packages.

w All warnings.

ENVIRONMENT
GROFF_TMAC_PATH

A colon separated list of directories in which to search for macro files. troff will scan directo-
ries given in the −M option before these, and in standard directories (current directory if in
unsafe mode, home directory, c:/progra 1/groff/lib/groff/site-tmac, c:/pro-
gra 1/groff/share/groff/site-tmac, c:/progra 1/groff/share/groff/1.20/tmac) after these.

GROFF_TYPESETTER
Default device.

GROFF_FONT_PATH
A colon separated list of directories in which to search for the devname directory. troff will
scan directories given in the −F option before these, and in standard directories (c:/pro-
gra 1/groff/share/groff/site-font, c:/progra 1/groff/share/groff/1.20/font, /usr/lib/font) after
these.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/troffrc

Initialization file (called before any other macro package).

c:/progra 1/groff/share/groff/1.20/tmac/troffrc-end
Initialization file (called after any other macro package).

c:/progra 1/groff/share/groff/1.20/tmac/name.tmac
c:/progra 1/groff/share/groff/1.20/tmac/tmac.name

Macro files

c:/progra 1/groff/share/groff/1.20/font/devname/DESC
Device description file for device name.

c:/progra 1/groff/share/groff/1.20/font/devname/F
Font file for font F of device name.

Note that troffrc and troffrc-end are neither searched in the current nor in the home directory by
default for security reasons (even if the −U option is given). Use the −M command line option or the
GROFF_TMAC_PATH environment variable to add these directories to the search path if necessary.

AUTHOR
Copyright (C) 1989, 2001, 2002, 2003, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site This document was written by James Clark, with modifications from Werner
Lemberg and Bernd Warken

This document is part of groff , the GNU roff distribution.

SEE ALSO

Groff Version 1.20 5 January 2009 3

TROFF(1) TROFF(1)

groff(1)
The main program of the groff system, a wrapper around troff .

groff(7)
A description of the groff language, including a short but complete reference of all predefined
requests, registers, and escapes of plain groff . From the command line, this is called by

man 7 groff

groff_diff(7)
The differences of the groff language and the classical troff language. Currently, this is the
most actual document of the groff system.

roff(7) An overview over groff and other roff systems, including pointers to further related documen-
tation.

The groff info file, cf. info(1), presents all groff documentation within a single document.

Groff Version 1.20 5 January 2009 4

GROFF_FONT(5) GROFF_FONT(5)

GROFF_FONT

NAME
groff_font − format of groff device and font description files

DESCRIPTION
The groff font format is roughly a superset of the ditroff font format. The font files for device name are
stored in a directory devname. There are two types of file: a device description file called DESC and
for each font F a font file called F . These are text files; unlike the ditroff font format, there is no asso-
ciated binary format.

DESC file format
The DESC file can contain the following types of line as shown below. Later entries in the file override
previous values.

Empty lines are ignored.

charset
This line and everything following in the file are ignored. It is allowed for the sake of back-
wards compatibility.

family fam

The default font family is fam.

fonts n F1 F2 F3 . . . Fn

Fonts F1, . . ., Fn are mounted in the font positions m + 1, . . ., m + n where m is the number of
styles. This command may extend over more than one line. A font name of 0 causes no font
to be mounted on the corresponding font position.

hor n The horizontal resolution is n machine units.

image_generator string

Needed for grohtml only. It specifies the program to generate PNG images from PostScript
input. Under GNU/Linux this is usually gs but under other systems (notably cygwin) it might
be set to another name.

paperlength n

The physical vertical dimension of the output medium in machine units. This isn’t used by
troff itself but by output devices. Deprecated. Use papersize instead.

papersize string

Select a paper size. Valid values for string are the ISO paper types A0-A7, B0-B7, C0-C7,
D0-D7, DL, and the US paper types letter, leg al, tabloid, ledger, statement, executive, com10,
and monarch. Case is not significant for string if it holds predefined paper types. Alterna-
tively, string can be a file name (e.g. ‘/etc/papersize’); if the file can be opened, groff reads the
first line and tests for the above paper sizes. Finally, string can be a custom paper size in the
format length,width (no spaces before and after the comma). Both length and width must have
a unit appended; valid values are ‘i’ for inches, ‘c’ for centimeters, ‘p’ for points, and ‘P’ for
picas. Example: 12c,235p. An argument which starts with a digit is always treated as a cus-
tom paper format. papersize sets both the vertical and horizontal dimension of the output
medium.

More than one argument can be specified; groff scans from left to right and uses the first valid
paper specification.

paperwidth n

The physical horizontal dimension of the output medium in machine units. Deprecated. Use
papersize instead. This isn’t used by troff itself but by output devices.

pass_filenames
Make troff tell the driver the source file name being processed. This is achieved by another
tcommand: F filename.

postpro program

Use program as the postprocessor.

prepro program

Call program as a preprocessor.

Groff Version 1.20 5 January 2009 1

GROFF_FONT(5) GROFF_FONT(5)

print program

Use program as the spooler program for printing. If omitted, the −l and −L options of groff
are ignored.

res n There are n machine units per inch.

sizes s1 s2 . . . sn 0
This means that the device has fonts at s1, s2, . . ., sn scaled points. The list of sizes must be
terminated by a 0. Each si can also be a range of sizes m−n. The list can extend over more
than one line.

sizescale n

The scale factor for point sizes. By default this has a value of 1. One scaled point is equal to
one point / n. The arguments to the unitwidth and sizes commands are given in scaled points.

styles S1 S2 . . . Sm

The first m font positions are associated with styles S1, . . ., Sm.

tcommand
This means that the postprocessor can handle the t and u output commands.

unicode
Indicate that the output device supports the complete Unicode repertoire. Useful only for
devices which produce character entities instead of glyphs.

If unicode is present, no charset section is required in the font description files since the Uni-
code handling built into groff is used. However, if there are entries in a charset section, they
either override the default mappings for those particular characters or add new mappings (nor-
mally for composite characters).

This is used for −Tutf8, −Thtml, and −Txhtml.

unitwidth n

Quantities in the font files are given in machine units for fonts whose point size is n scaled
points.

unscaled_charwidths
Make the font handling module always return unscaled glyph widths. Needed for the grohtml
device.

use_charnames_in_special
This command indicates that troff should encode named glyphs inside special commands.

vert n The vertical resolution is n machine units.

The res, unitwidth, fonts, and sizes lines are compulsory. Not all commands in the DESC file are used
by troff itself; some of the keywords (or even additional ones) are used by postprocessors to store arbi-
trary information about the device.

Here a list of obsolete keywords which are recognized by groff but completely ignored: spare1,
spare2, biggestfont.

Font file format
A font file has two sections; empty lines are ignored in both of them.

The first section is a sequence of lines each containing a sequence of blank delimited words; the first
word in the line is a key, and subsequent words give a value for that key.

ligatures lig1 lig2 . . . lign [0]
Glyphs lig1, lig2, . . ., lign are ligatures; possible ligatures are ff, fi, fl, ffi, and ffl. For back-
wards compatibility, the list of ligatures may be terminated with a 0. The list of ligatures may
not extend over more than one line.

name F

The name of the font is F .

slant n The glyphs of the font have a slant of n degrees. (Positive means forward.)

spacewidth n

The normal width of a space is n.

Groff Version 1.20 5 January 2009 2

GROFF_FONT(5) GROFF_FONT(5)

special The font is special; this means that when a glyph is requested that is not present in the current
font, it is searched for in any special fonts that are mounted.

Other commands are ignored by troff but may be used by postprocessors to store arbitrary information
about the font in the font file.

The first section can contain comments which start with the # character and extend to the end of a line.

The second section contains one or two subsections. It must contain a charset subsection and it may
also contain a kernpairs subsection. These subsections can appear in any order. Each subsection starts
with a word on a line by itself.

The word charset starts the charset subsection. The charset line is followed by a sequence of lines.
Each line gives information for one glyph. A line comprises a number of fields separated by blanks or
tabs. The format is

name metrics type code [entity_name] [−− comment]

name identifies the glyph: if name is a single glyph c then it corresponds to the groff input character c;
if it is of the form \c where c is a single character, then it corresponds to the special character \[c]; oth-
erwise it corresponds to the groff input character \[name]. If it is exactly two characters xx it can be
entered as \(xx. Note that single-letter special characters can’t be accessed as \c; the only exception is
‘\−’ which is identical to ‘\[−]’. The name −−− is special and indicates that the glyph is unnamed; such
glyphs can only be used by means of the \N escape sequence in troff.

The type field gives the glyph type:

1 means the glyph has a descender, for example, ‘p’;

2 means the glyph has an ascender, for example, ‘b’;

3 means the glyph has both an ascender and a descender, for example, ‘(’.

The code field gives the code which the postprocessor uses to print the glyph. The glyph can also be
input to groff using this code by means of the \N escape sequence. The code can be any integer. If it
starts with a 0 it is interpreted as octal; if it starts with 0x or 0X it is intepreted as hexadecimal. Note,
however, that the \N escape sequence only accepts a decimal integer.

The entity_name field gives an ASCII string identifying the glyph which the postprocessor uses to print
that glyph. This field is optional and is currently used by grops to build sub-encoding arrays for PS
fonts containing more than 256 glyphs. (It has also been used for grohtml’s entity names but for effi-
ciency reasons this data is now compiled directly into grohtml.)

Anything on the line after the encoding field or ‘−−’ are ignored.

The metrics field has the form (in one line; it is broken here for the sake of readability):

width[,height[,depth[,italic-correction

[,left-italic-correction[,subscript-correction]]]]]

There must not be any spaces between these subfields. Missing subfields are assumed to be 0. The
subfields are all decimal integers. Since there is no associated binary format, these values are not
required to fit into a variable of type char as they are in ditroff. The width subfields gives the width of
the glyph. The height subfield gives the height of the glyph (upwards is positive); if a glyph does not
extend above the baseline, it should be given a zero height, rather than a negative height. The depth

subfield gives the depth of the glyph, that is, the distance below the lowest point below the baseline to
which the glyph extends (downwards is positive); if a glyph does not extend below above the baseline,
it should be given a zero depth, rather than a negative depth. The italic-correction subfield gives the
amount of space that should be added after the glyph when it is immediately to be followed by a glyph
from a roman font. The left-italic-correction subfield gives the amount of space that should be added
before the glyph when it is immediately to be preceded by a glyph from a roman font. The subscript-

correction gives the amount of space that should be added after a glyph before adding a subscript. This
should be less than the italic correction.

A line in the charset section can also have the format

name "

This indicates that name is just another name for the glyph mentioned in the preceding line.

The word kernpairs starts the kernpairs section. This contains a sequence of lines of the form:

Groff Version 1.20 5 January 2009 3

GROFF_FONT(5) GROFF_FONT(5)

c1 c2 n

This means that when glyph c1 appears next to glyph c2 the space between them should be increased
by n. Most entries in kernpairs section have a neg ative value for n.

FILES
c:/progra 1/groff/share/groff/1.20/font/devname/DESC

Device description file for device name.

c:/progra 1/groff/share/groff/1.20/font/devname/F
Font file for font F of device name.

SEE ALSO
groff_out(5), troff(1).

Groff Version 1.20 5 January 2009 4

GROFF_OUT(5) GROFF_OUT(5)

GROFF_OUT

NAME
groff_out − groff intermediate output format

DESCRIPTION
This manual page describes the intermediate output format of the GNU roff(7) text processing system
groff(1). This output is produced by a run of the GNU troff(1) program. It contains already all device-
specific information, but it is not yet fed into a device postprocessor program.

As the GNU roff processor groff(1) is a wrapper program around troff that automatically calls a post-
processor, this output does not show up normally. This is why it is called intermediate within the groff

system. The groff program provides the option -Z to inhibit postprocessing, such that the produced
intermediate output is sent to standard output just like calling troff manually.

In this document, the term troff output describes what is output by the GNU troff program, while inter-

mediate output refers to the language that is accepted by the parser that prepares this output for the
postprocessors. This parser is smarter on whitespace and implements obsolete elements for compatibil-
ity, otherwise both formats are the same. Both formats can be viewed directly with gxditview(1).

The main purpose of the intermediate output concept is to facilitate the development of postprocessors
by providing a common programming interface for all devices. It has a language of its own that is
completely different from the groff(7) language. While the groff language is a high-level programming
language for text processing, the intermediate output language is a kind of low-level assembler lan-
guage by specifying all positions on the page for writing and drawing.

The pre-groff roff versions are denoted as classical troff . The intermediate output produced by groff is
fairly readable, while classical troff output was hard to understand because of strange habits that are
still supported, but not used any longer by GNU troff .

LANGUAGE CONCEPTS
During the run of troff, the roff input is cracked down to the information on what has to be printed at
what position on the intended device. So the language of the intermediate output format can be quite
small. Its only elements are commands with or without arguments. In this document, the term “com-
mand” always refers to the intermediate output language, never to the roff language used for document
formatting. There are commands for positioning and text writing, for drawing, and for device control-
ling.

Separation
Classical troff output had strange requirements on whitespace. The groff output parser, howev er, is
smart about whitespace by making it maximally optional. The whitespace characters, i.e., the tab,
space, and newline characters, always have a syntactical meaning. They are never printable because
spacing within the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It separates commands
and arguments, but is only required when there would occur a clashing between the command code and
the arguments without the space. Most often, this happens when variable length command names,
arguments, argument lists, or command clusters meet. Commands and arguments with a known, fixed
length need not be separated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by whitespace, a
comment, or a newline character. Thus a syntactical line break is defined to consist of optional syntac-

tical space that is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single letter taking a fixed number of
arguments. For historical reasons, the parser allows to stack such commands on the same line, but for-
tunately, in groff intermediate output, every command with at least one argument is followed by a line
break, thus providing excellent readability.

The other commands — those for drawing and device controlling — have a more complicated struc-
ture; some recognize long command names, and some take a variable number of arguments. So all D
and x commands were designed to request a syntactical line break after their last argument. Only one
command, ‘x X’ has an argument that can stretch over sev eral lines, all other commands must have all
of their arguments on the same line as the command, i.e., the arguments may not be split by a line
break.

Groff Version 1.20 5 January 2009 1

GROFF_OUT(5) GROFF_OUT(5)

Empty lines, i.e., lines containing only space and/or a comment, can occur everywhere. They are just
ignored.

Argument Units
Some commands take integer arguments that are assumed to represent values in a measurement unit,
but the letter for the corresponding scale indicator is not written with the output command arguments;
see groff(7) and the groff info file for more on this topic. Most commands assume the scale indicator u,
the basic unit of the device, some use z, the scaled point unit of the device, while others, such as the
color commands expect plain integers. Note that these scale indicators are relative to the chosen
device. They are defined by the parameters specified in the device’s DESC file; see groff_font(5).

Note that single characters can have the eighth bit set, as can the names of fonts and special characters
(this is, glyphs). The names of glyphs and fonts can be of arbitrary length. A glyph that is to be
printed will always be in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or newline); an
embedded # character is regarded as part of the argument, not as the beginning of a comment com-
mand. An integer argument is already terminated by the next non-digit character, which then is
regarded as the first character of the next argument or command.

Document Parts
A correct intermediate output document consists of two parts, the prologue and the body.

The task of the prologue is to set the general device parameters using three exactly specified com-
mands. The groff prologue is guaranteed to consist of the following three lines (in that order):

x T device

x res n h v

x init

with the arguments set as outlined in the section Device Control Commands. Howev er, the parser for
the intermediate output format is able to swallow additional whitespace and comments as well.

The body is the main section for processing the document data. Syntactically, it is a sequence of any
commands different from the ones used in the prologue. Processing is terminated as soon as the first
x stop command is encountered; the last line of any groff intermediate output always contains such a
command.

Semantically, the body is page oriented. A new page is started by a p command. Positioning, writing,
and drawing commands are always done within the current page, so they cannot occur before the first
p command. Absolute positioning (by the H and V commands) is done relative to the current page, all
other positioning is done relative to the current location within this page.

COMMAND REFERENCE
This section describes all intermediate output commands, the classical commands as well as the groff

extensions.

Comment Command
#anything〈end-of-line〉

A comment. Ignore any characters from the # character up to the next newline character.

This command is the only possibility for commenting in the intermediate output. Each comment can
be preceded by arbitrary syntactical space; every command can be terminated by a comment.

Simple Commands
The commands in this subsection have a command code consisting of a single character, taking a fixed
number of arguments. Most of them are commands for positioning and text writing. These commands
are smart about whitespace. Optionally, syntactical space can be inserted before, after, and between the
command letter and its arguments. All of these commands are stackable, i.e., they can be preceded by
other simple commands or followed by arbitrary other commands on the same line. A separating syn-

tactical space is only necessary when two integer arguments would clash or if the preceding argument
ends with a string argument.

C xxx〈white-space〉
Print a glyph (special character) named xxx. The trailing syntactical space or line break is
necessary to allow glyph names of arbitrary length. The glyph is printed at the current print
position; the glyph’s size is read from the font file. The print position is not changed.

Groff Version 1.20 5 January 2009 2

GROFF_OUT(5) GROFF_OUT(5)

c c Print glyph with single-letter name c at the current print position; the glyph’s size is read from
the font file. The print position is not changed.

f n Set font to font number n (a non-negative integer).

H n Move right to the absolute vertical position n (a non-negative integer in basic units u) relative
to left edge of current page.

h n Move n (a non-negative integer) basic units u horizontally to the right. [CSTR #54] allows
negative values for n also, but groff doesn’t use this.

m color-scheme [component . . .]
Set the color for text (glyphs), line drawing, and the outline of graphic objects using different
color schemes; the analoguous command for the filling color of graphic objects is DF. The
color components are specified as integer arguments between 0 and 65536. The number of
color components and their meaning vary for the different color schemes. These commands
are generated by the groff escape sequence \m. No position changing. These commands are a
groff extension.

mc cyan magenta yellow

Set color using the CMY color scheme, having the 3 color components cyan,
magenta, and yellow.

md Set color to the default color value (black in most cases). No component arguments.

mg gray

Set color to the shade of gray given by the argument, an integer between 0 (black)
and 65536 (white).

mk cyan magenta yellow black

Set color using the CMYK color scheme, having the 4 color components cyan,
magenta, yellow, and black.

mr red green blue

Set color using the RGB color scheme, having the 3 color components red, green,
and blue.

N n Print glyph with index n (an integer, normally non-negative) of the current font. The print
position is not changed. If −T html or −T xhtml is used, negative values are emitted also to
indicate an unbreakable space with given width. For example, N −193 represents an unbreak-
able space which has a width of 193 u. This command is a groff extension.

n b a Inform the device about a line break, but no positioning is done by this command. In classical

troff , the integer arguments b and a informed about the space before and after the current line
to make the intermediate output more human readable without performing any action. In
groff , they are just ignored, but they must be provided for compatibility reasons.

p n Begin a new page in the outprint. The page number is set to n. This page is completely inde-
pendent of pages formerly processed even if those have the same page number. The vertical
position on the outprint is automatically set to 0. All positioning, writing, and drawing is
always done relative to a page, so a p command must be issued before any of these com-
mands.

s n Set point size to n scaled points (this is unit z in GNU troff). Classical troff used the unit
points (p) instead; see section COMPATIBILITY.

t xyz . . .〈white-space〉
t xyz . . . dummy-arg〈white-space〉

Print a word, i.e., a sequence of glyphs with single-letter names x, y, z, etc., terminated by a
space character or a line break; an optional second integer argument is ignored (this allows the
formatter to generate an even number of arguments). The first glyph should be printed at the
current position, the current horizontal position should then be increased by the width of the
first glyph, and so on for each glyph. The widths of the glyph are read from the font file,
scaled for the current point size, and rounded to a multiple of the horizontal resolution. Spe-
cial characters (glyphs with names longer than a single letter) cannot be printed using this
command; use the C command for those glyphs. This command is a groff extension; it is only
used for devices whose DESC file contains the tcommand keyword; see groff_font(5).

Groff Version 1.20 5 January 2009 3

GROFF_OUT(5) GROFF_OUT(5)

u n xyz . . .〈white-space〉
Print word with track kerning. This is the same as the t command except that after printing
each glyph, the current horizontal position is increased by the sum of the width of that glyph
and n (an integer in basic units u). This command is a groff extension; it is only used for
devices whose DESC file contains the tcommand keyword; see groff_font(5).

V n Move down to the absolute vertical position n (a non-negative integer in basic units u) relative
to upper edge of current page.

v n Move n basic units u down (n is a non-negative integer). [CSTR #54] allows negative values
for n also, but groff doesn’t use this.

w Informs about a paddable whitespace to increase readability. The spacing itself must be per-
formed explicitly by a move command.

Graphics Commands
Each graphics or drawing command in the intermediate output starts with the letter D followed by one
or two characters that specify a subcommand; this is followed by a fixed or variable number of integer
arguments that are separated by a single space character. A D command may not be followed by
another command on the same line (apart from a comment), so each D command is terminated by a
syntactical line break.

troff output follows the classical spacing rules (no space between command and subcommand, all argu-
ments are preceded by a single space character), but the parser allows optional space between the com-
mand letters and makes the space before the first argument optional. As usual, each space can be any
sequence of tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they are integers rep-
resenting a size measured in basic units u. The h arguments stand for horizontal distances where posi-
tive means right, negative left. The v arguments stand for vertical distances where positive means
down, negative up. All these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds to a similar groff \D escape
sequence; see groff(7).

Unknown D commands are assumed to be device-specific. Its arguments are parsed as strings; the
whole information is then sent to the postprocessor.

In the following command reference, the syntax element 〈line-break〉 means a syntactical line break as
defined in section Separation.

D h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
Draw B-spline from current position to offset (h

1
, v

1
), then to offset (h

2
, v

2
) if giv en, etc., up to

(h
n
, v

n
). This command takes a variable number of argument pairs; the current position is

moved to the terminal point of the drawn curve.

Da h
1

v
1

h
2

v
2

〈line-break〉
Draw arc from current position to (h

1
, v

1
) + (h

2
, v

2
) with center at (h

1
, v

1
); then move the cur-

rent position to the final point of the arc.

DC d 〈line-break〉
DC d dummy-arg 〈line-break〉

Draw a solid circle using the current fill color with diameter d (integer in basic units u) with
leftmost point at the current position; then move the current position to the rightmost point of
the circle. An optional second integer argument is ignored (this allows to the formatter to gen-
erate an even number of arguments). This command is a groff extension.

Dc d 〈line-break〉
Draw circle line with diameter d (integer in basic units u) with leftmost point at the current
position; then move the current position to the rightmost point of the circle.

DE h v 〈line-break〉
Draw a solid ellipse in the current fill color with a horizontal diameter of h and a vertical
diameter of v (both integers in basic units u) with the leftmost point at the current position;
then move to the rightmost point of the ellipse. This command is a groff extension.

Groff Version 1.20 5 January 2009 4

GROFF_OUT(5) GROFF_OUT(5)

De h v 〈line-break〉
Draw an outlined ellipse with a horizontal diameter of h and a vertical diameter of v (both
integers in basic units u) with the leftmost point at current position; then move to the right-
most point of the ellipse.

DF color-scheme [component . . .] 〈line-break〉
Set fill color for solid drawing objects using different color schemes; the analoguous com-
mand for setting the color of text, line graphics, and the outline of graphic objects is m. The
color components are specified as integer arguments between 0 and 65536. The number of
color components and their meaning vary for the different color schemes. These commands
are generated by the groff escape sequences \D’F . . .’ and \M (with no other corresponding
graphics commands). No position changing. This command is a groff extension.

DFc cyan magenta yellow 〈line-break〉
Set fill color for solid drawing objects using the CMY color scheme, having the
3 color components cyan, magenta, and yellow.

DFd 〈line-break〉
Set fill color for solid drawing objects to the default fill color value (black in most
cases). No component arguments.

DFg gray 〈line-break〉
Set fill color for solid drawing objects to the shade of gray given by the argument, an
integer between 0 (black) and 65536 (white).

DFk cyan magenta yellow black 〈line-break〉
Set fill color for solid drawing objects using the CMYK color scheme, having the
4 color components cyan, magenta, yellow, and black.

DFr red green blue 〈line-break〉
Set fill color for solid drawing objects using the RGB color scheme, having the
3 color components red, green, and blue.

Df n 〈line-break〉
The argument n must be an integer in the range -32767 to 32767.

0 ≤ n ≤ 1000
Set the color for filling solid drawing objects to a shade of gray, where 0 corresponds
to solid white, 1000 (the default) to solid black, and values inbetween to intermediate
shades of gray; this is obsoleted by command DFg.

n < 0 or n > 1000
Set the filling color to the color that is currently being used for the text and the out-
line, see command m. For example, the command sequence

mg 0 0 65536 Df -1

sets all colors to blue.

No position changing. This command is a groff extension.

Dl h v 〈line-break〉
Draw line from current position to offset (h, v) (integers in basic units u); then set current
position to the end of the drawn line.

Dp h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
Draw a polygon line from current position to offset (h

1
, v

1
), from there to offset (h

2
, v

2
), etc.,

up to offset (h
n
, v

n
), and from there back to the starting position. For historical reasons, the

position is changed by adding the sum of all arguments with odd index to the actual horizontal
position and the even ones to the vertical position. Although this doesn’t make sense it is kept
for compatibility. This command is a groff extension.

DP h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
The same macro as the corresponding Dp command with the same arguments, but draws a
solid polygon in the current fill color rather than an outlined polygon. The position is changed
in the same way as with Dp. This command is a groff extension.

Groff Version 1.20 5 January 2009 5

GROFF_OUT(5) GROFF_OUT(5)

Dt n 〈line-break〉
Set the current line thickness to n (an integer in basic units u) if n > 0; if n = 0 select the small-
est available line thickness; if n < 0 set the line thickness proportional to the point size (this is
the default before the first Dt command was specified). For historical reasons, the horizontal
position is changed by adding the argument to the actual horizontal position, while the vertical
position is not changed. Although this doesn’t make sense it is kept for compatibility. This
command is a groff extension.

Device Control Commands
Each device control command starts with the letter x followed by a space character (optional or arbi-
trary space/tab in groff) and a subcommand letter or word; each argument (if any) must be preceded by
a syntactical space. All x commands are terminated by a syntactical line break; no device control com-
mand can be followed by another command on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as a word, i.e.,
an arbitrary sequence of characters terminated by the next tab, space, or newline character. All charac-
ters of the subcommand word but the first are simply ignored. For example, troff outputs the initializa-
tion command x i as x init and the resolution command x r as x res. But writings like x i_like_groff
and x roff_is_groff are accepted as well to mean the same commands.

In the following, the syntax element 〈line-break〉 means a syntactical line break as defined in section
Separation.

xF name 〈line-break〉
(Filename control command)
Use name as the intended name for the current file in error reports. This is useful for remem-
bering the original file name when groff uses an internal piping mechanism. The input file is
not changed by this command. This command is a groff extension.

xf n s 〈line-break〉
(font control command)
Mount font position n (a non-negative integer) with font named s (a text word), cf.
groff_font(5).

xH n 〈line-break〉
(Height control command)
Set character height to n (a positive integer in scaled points z). Classical troff used the unit
points (p) instead; see section COMPATIBILITY.

xi 〈line-break〉
(init control command)
Initialize device. This is the third command of the prologue.

xp 〈line-break〉
(pause control command)
Parsed but ignored. The classical documentation reads pause device, can be restarted .

xr n h v 〈line-break〉
(resolution control command)
Resolution is n, while h is the minimal horizontal motion, and v the minimal vertical motion
possible with this device; all arguments are positive integers in basic units u per inch. This is
the second command of the prologue.

xS n 〈line-break〉
(Slant control command)
Set slant to n degrees (an integer in basic units u).

xs 〈line-break〉
(stop control command)
Terminates the processing of the current file; issued as the last command of any intermediate

troff output.

xt 〈line-break〉
(trailer control command)

Groff Version 1.20 5 January 2009 6

GROFF_OUT(5) GROFF_OUT(5)

Generate trailer information, if any. In groff, this is actually just ignored.

xT xxx 〈line-break〉
(Typesetter control command)
Set name of device to word xxx, a sequence of characters ended by the next whitespace char-
acter. The possible device names coincide with those from the groff −T option. This is the
first command of the prologue.

xu n 〈line-break〉
(underline control command)
Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0, stop underlin-
ing of spaces. This is needed for the cu request in nroff mode and is ignored otherwise. This
command is a groff extension.

xX anything 〈line-break〉
(X-escape control command)
Send string anything uninterpreted to the device. If the line following this command starts
with a + character this line is interpreted as a continuation line in the following sense. The +
is ignored, but a newline character is sent instead to the device, the rest of the line is sent unin-
terpreted. The same applies to all following lines until the first character of a line is not a +
character. This command is generated by the groff escape sequence \X. The line-continuing
feature is a groff extension.

Obsolete Command
In classical troff output, emitting a single glyph was mostly done by a very strange command that com-
bined a horizontal move and the printing of a glyph. It didn’t hav e a command code, but is represented
by a 3-character argument consisting of exactly 2 digits and a character.

ddc Move right dd (exactly two decimal digits) basic units u, then print glyph with single-letter
name c.

In groff , arbitrary syntactical space around and within this command is allowed to be added.
Only when a preceding command on the same line ends with an argument of variable length a
separating space is obligatory. In classical troff , large clusters of these and other commands
were used, mostly without spaces; this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the width of the
glyphs can become much larger than two decimal digits. In groff, this is only used for the devices
X75, X75-12, X100, and X100-12. For other devices, the commands t and u provide a better function-
ality.

POSTPROCESSING
The roff postprocessors are programs that have the task to translate the intermediate output into actions
that are sent to a device. A device can be some piece of hardware such as a printer, or a software file
format suitable for graphical or text processing. The groff system provides powerful means that make
the programming of such postprocessors an easy task.

There is a library function that parses the intermediate output and sends the information obtained to the
device via methods of a class with a common interface for each device. So a groff postprocessor must
only redefine the methods of this class. For details, see the reference in section FILES.

EXAMPLES
This section presents the intermediate output generated from the same input for three different devices.
The input is the sentence hell world fed into groff on the command line.

• High-resolution device ps

shell> echo "hell world" | groff -Z -T ps

x T ps

x res 72000 1 1

x init

p1

x font 5 TR

f5

s10000

Groff Version 1.20 5 January 2009 7

GROFF_OUT(5) GROFF_OUT(5)

V12000

H72000

thell

wh2500

tw

H96620

torld

n12000 0

x trailer

V792000

x stop

This output can be fed into the postprocessor grops(1) to get its representation as a PostScript file.

• Low-resolution device latin1

This is similar to the high-resolution device except that the positioning is done at a minor scale.
Some comments (lines starting with #) were added for clarification; they were not generated by
the formatter.

shell> "hell world" | groff -Z -T latin1

prologue

x T latin1

x res 240 24 40

x init

begin a new page

p1

font setup

x font 1 R

f1

s10

initial positioning on the page

V40

H0

write text ‘hell’

thell

inform about a space, and do it by a horizontal jump

wh24

write text ‘world’

tworld

announce line break, but do nothing because ...

n40 0

... the end of the document has been reached

x trailer

V2640

x stop

This output can be fed into the postprocessor grotty(1) to get a formatted text document.

• Classical style output

As a computer monitor has a very low resolution compared to modern printers the intermediate

output for the X devices can use the jump-and-write command with its 2-digit displacements.

shell> "hell world" | groff -Z -T X100

x T X100

x res 100 1 1

x init

p1

x font 5 TR

f5

s10

V16

Groff Version 1.20 5 January 2009 8

GROFF_OUT(5) GROFF_OUT(5)

H100

write text with old-style jump-and-write command

ch07e07l03lw06w11o07r05l03dh7

n16 0

x trailer

V1100

x stop

This output can be fed into the postprocessor xditview(1x) or gxditview(1) for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the classical output are almost
unreadable.

COMPATIBILITY
The intermediate output language of the classical troff was first documented in [CSTR #97]. The groff

intermediate output format is compatible with this specification except for the following features.

• The classical quasi device independence is not yet implemented.

• The old hardware was very different from what we use today. So the groff devices are also funda-
mentally different from the ones in classical troff . For example, the classical PostScript device
was called post and had a resolution of 720 units per inch, while groff ’s ps device has a resolution
of 72000 units per inch. Maybe, by implementing some rescaling mechanism similar to the classi-
cal quasi device independence, these could be integrated into modern groff .

• The B-spline command D is correctly handled by the intermediate output parser, but the drawing
routines aren’t implemented in some of the postprocessor programs.

• The argument of the commands s and x H has the implicit unit scaled point z in groff , while clas-

sical troff had point (p). This isn’t an incompatibility, but a compatible extension, for both units
coincide for all devices without a sizescale parameter, including all classical and the groff text
devices. The few groff devices with a sizescale parameter either did not exist, had a different
name, or seem to have had a different resolution. So conflicts with classical devices are very
unlikely.

• The position changing after the commands Dp, DP, and Dt is illogical, but as old versions of groff
used this feature it is kept for compatibility reasons.

The differences between groff and classical troff are documented in groff_diff(7).

FILES
c:/progra 1/groff/share/groff/1.20/font/devname/DESC

Device description file for device name.

〈groff-source-dir〉/src/libs/libdriver/input.cpp
Defines the parser and postprocessor for the intermediate output. It is located relative to the
top directory of the groff source tree. This parser is the definitive specification of the groff

intermediate output format.

SEE ALSO
A reference like groff(7) refers to a manual page; here groff in section 7 of the man-page documenta-
tion system. To read the example, look up section 7 in your desktop help system or call from the shell
prompt

shell> man 7 groff

For more details, see man(1).

groff(1)
option -Z and further readings on groff.

groff(7)
for details of the groff language such as numerical units and escape sequences.

groff_font(5)
for details on the device scaling parameters of the DESC file.

troff(1) generates the device-independent intermediate output.

Groff Version 1.20 5 January 2009 9

GROFF_OUT(5) GROFF_OUT(5)

roff(7) for historical aspects and the general structure of roff systems.

groff_diff(7)
The differences between the intermediate output in groff and classical troff.

gxditview(1)
Viewer for the intermediate output.

grodvi(1), grohtml(1), grolbp(1), grolj4(1), grops(1), grotty(1)
the groff postprocessor programs.

For a treatment of all aspects of the groff system within a single document, see the groff info file. It can
be read within the integrated help systems, within emacs(1) or from the shell prompt by

shell> info groff

The classical troff output language is described in two AT&T Bell Labs CSTR documents available on-
line at Bell Labs CSTR site

[CSTR #97]

A Typesetter-independent TROFF by Brian Kernighan is the original and most comprehensive
documentation on the output language; see CSTR #97

[CSTR #54]

The 1992 revision of the Nroff/Troff User’s Manual by J. F. Ossanna and Brian Kernighan

isn’t as comprehensive as [CSTR #97] regarding the output language; see CSTR #54

AUTHORS
Copyright (C) 1989, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation,
Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL with this package; it is also available on-line
at the GNU copyleft site

This document is part of groff , the GNU roff distribution. It is based on a former version − published
under the GPL − that described only parts of the groff extensions of the output language. It was rewrit-
ten in 2002 by Bernd Warken and is maintained by Werner Lemberg

Groff Version 1.20 5 January 2009 10

GROFF_TMAC(5) GROFF_TMAC(5)

GROFF_TMAC

NAME
groff_tmac − macro files in the roff typesetting system

DESCRIPTION
The roff(7) type-setting system provides a set of macro packages suitable for special kinds of docu-
ments. Each macro package stores its macros and definitions in a file called the package’s tmac file.
The name is deduced from ‘Troff MACros’.

The tmac files are normal roff source documents, except that they usually contain only definitions and
setup commands, but no text. All tmac files are kept in a single or a small number of directories, the
tmac directories.

GROFF MACRO PACKAGES
groff provides all classical macro packages, some more full packages, and some secondary packages for
special purposes. Note that it is not possible to use multiple primary macro packages at the same time;
saying e.g.

sh# groff −m man −m ms foo

or

sh# groff −m man foo −m ms bar

fails. Exception to this is the use of man pages written with either the mdoc or the man macro pack-
age. See below the description of the andoc.tmac file.

Man Pages
man This is the classical macro package for UNIX manual pages (man pages); it is quite handy and

easy to use; see groff_man(7).

doc
mdoc An alternative macro package for man pages mainly used in BSD systems; it provides many

new features, but it is not the standard for man pages; see groff_mdoc(7).

andoc
mandoc

Use this file in case you don’t know whether the man macros or the mdoc package should be
used. Multiple man pages (in either format) can be handled.

Full Packages
The packages in this section provide a complete set of macros for writing documents of any kind, up to
whole books. They are similar in functionality; it is a matter of taste which one to use.

me The classical me macro package; see groff_me(7).

mm The semi-classical mm macro package; see groff_mm(7).

mom The new mom macro package, only available in groff. As this is not based on other packages,
it can be freely designed. So it is expected to become quite a nice, modern macro package.
See groff_mom(7).

ms The classical ms macro package; see groff_ms(7).

Language-specific Packages
cs This file adds support for Czech localization, including the main macro packages (me, mom,

mm, and ms).

Note that cs.tmac sets the input encoding to latin-2.

de
den German localization support, including the main macro packages (me, mom, mm, and ms).

de.tmac selects hyphenation patterns for traditional orthography, and den.tmac does the same
for the new orthography (‘Rechtschreibreform’). It should be used as the last macro package
on the command line.

fr This file adds support for French localization, including the main macro packages (me, mom,
mm, and ms). Example:

Groff Version 1.20 5 January 2009 1

GROFF_TMAC(5) GROFF_TMAC(5)

sh# groff -ms -mfr foo.ms > foo.ps

Note that fr.tmac sets the input encoding to latin-9 to get proper support of the ‘oe’ ligature.

sv Swedish localization support, including the me, mom, and ms macro packages. Note that
Swedish for the mm macros is handled separately; see groff_mmse(7). It should be used as
the last macro package on the command line.

Input Encodings
latin1
latin2
latin5
latin9 Various input encodings supported directly by groff. Normally, this macro is loaded at the

very beginning of a document or specified as the first macro argument on the command line.
roff loads latin1 by default at start-up. Note that these macro packages don’t work on
EBCDIC hosts.

cp1047 Encoding support for EBCDIC. On those platforms it is loaded automatically at start-up. Due
to different character ranges used in roff it doesn’t work on architectures which are based on
ASCII.

Note that it can happen that some input encoding characters are not available for a particular output
device. For example, saying

groff -Tlatin1 -mlatin9 ...

fails if you use the Euro character in the input. Usually, this limitation is present only for devices
which have a limited set of output glyphs (−Tascii, −Tlatin1); for other devices it is usually sufficient
to install proper fonts which contain the necessary glyphs.

Special Packages
The macro packages in this section are not intended for stand-alone usage, but can be used to add spe-
cial functionality to any other macro package or to plain groff.

60bit Provide some macros for addition, multiplication, and division of 60bit integers (allowing safe
multiplication of 30bit integers, for example).

ec Switch to the EC and TC font families. To be used with grodvi(1) – this man page also gives
more details of how to use it.

papersize
This macro file is already loaded at start-up by troff so it isn’t necessary to call it explicitly. It
provides an interface to set the paper size on the command line with the option −dpaper=size.
Possible values for size are the same as the predefined papersize values in the DESC file (only
lowercase; see groff_font(5) for more) except a7-d7. An appended l (ell) character denotes
landscape orientation. Examples: a4, c3l, letterl.

Most output drivers need additional command line switches −p and −l to override the default
paper length and orientation as set in the driver specific DESC file. For example, use the fol-
lowing for PS output on A4 paper in landscape orientation:

sh# groff −Tps −dpaper=a4l −P−pa4 −P−l −ms foo.ms > foo.ps

pic This file provides proper definitions for the macros PS and PE, needed for the pic(1) pre-
processor. They center each picture. Use it only if your macro package doesn’t provide
proper definitions for those two macros (actually, most of them already do).

pspic A single macro is provided in this file, PSPIC, to include a PostScript graphic in a document.
The following output devices support inclusion of PS images: −Tps, −Tdvi, −Thtml, and
−Txhtml; for all other devices the image is replaced with a hollow rectangle of the same size.
This macro file is already loaded at start-up by troff so it isn’t necessary to call it explicitly.

Syntax:

.PSPIC [−L | −R | −C | −I n] file [width [height]]

file is the name of the PostScript file; width and height give the desired width and height of the
image. If neither a width nor a height argument is specified, the image’s natural width (as
given in the file’s bounding box) or the current line length is used as the width, whatever is

Groff Version 1.20 5 January 2009 2

GROFF_TMAC(5) GROFF_TMAC(5)

smaller. The width and height arguments may have scaling indicators attached; the default
scaling indicator is i. This macro scales the graphic uniformly in the x and y directions so that
it is no more than width wide and height high. Option −C centers the graphic horizontally,
which is the default. The −L and −R options cause the graphic to be left-aligned and right-
aligned, respectively. The −I option causes the graphic to be indented by n (default scaling
indicator is m).

For use of .PSPIC within a diversion it is recommended to extend it with the following code,
assuring that the diversion’s width completely covers the image’s width.

.am PSPIC . vpt 0 \h’(\\n[ps-offset]u + \\n[ps-deswid]u)’ . sp -1 . vpt 1 ..

ptx A single macro is provided in this file, xx, for formatting permuted index entries as produces
by the GNU ptx(1) program. In case you need a different formatting, copy the macro into
your document and adapt it to your needs.

trace Use this for tracing macro calls. It is only useful for debugging. See groff_trace(7).

tty-char
Overrides the definition of standard troff characters and some groff characters for TTY
devices. The optical appearance is intentionally inferior compared to that of normal TTY for-
matting to allow processing with critical equipment.

www Additions of elements known from the HTML format, as used in the internet (World Wide
Web) pages; this includes URL links and mail addresses; see groff_www(7).

NAMING
Classical roff systems were designed before the conventions of the modern C getopt(3) call evolved,
and used a naming scheme for macro packages that looks odd to modern eyes. Macro packages were
always included with the option −m; when this option was directly followed by its argument without an
intervening space, this looked like a long option preceded by a single minus — a sensation in the com-
puter stone age. To make this invocation form work, classical troff macro packages used names that
started with the letter ‘m’, which was omitted in the naming of the macro file.

For example, the macro package for the man pages was called man, while its macro file tmac.an. So it
could be activated by the argument an to option −m, or −man for short.

For similar reasons, macro packages that did not start with an ‘m’ had a leading ‘m’ added in the docu-
mentation and in speech; for example, the package corresponding to tmac.doc was called mdoc in the
documentation, although a more suitable name would be doc. For, when omitting the space between
the option and its argument, the command line option for activating this package reads −mdoc.

To cope with all situations, actual versions of groff(1) are smart about both naming schemes by provid-
ing two macro files for the inflicted macro packages; one with a leading ‘m’ the other one without it.
So in groff , the man macro package may be specified as on of the following four methods:

sh# groff −m man sh# groff −man sh# groff −mman sh# groff −m an

Recent packages that do not start with ‘m’ do not use an additional ‘m’ in the documentation. For
example, the www macro package may be specified only as one of the two methods:

sh# groff −m www sh# groff −mwww

Obviously, variants like −mmwww would not make much sense.

A second strange feature of classical troff was to name macro files in the form tmac.name. In modern
operating systems, the type of a file is specified as a postfix, the file name extension. Again, groff
copes with this situation by searching both anything.tmac and tmac.anything if only anything is speci-
fied.

The easiest way to find out which macro packages are available on a system is to check the man page
groff(1), or the contents of the tmac directories.

In groff , most macro packages are described in man pages called groff_name(7), with a leading ‘m’ for
the classical packages.

INCLUSION
There are several ways to use a macro package in a document. The classical way is to specify the

Groff Version 1.20 5 January 2009 3

GROFF_TMAC(5) GROFF_TMAC(5)

troff/groff option −m name at run-time; this makes the contents of the macro package name available.
In groff, the file name.tmac is searched within the tmac path; if not found, tmac.name is searched for
instead.

Alternatively, it is also possible to include a macro file by adding the request .so filename into the docu-
ment; the argument must be the full file name of an existing file, possibly with the directory where it is
kept. In groff, this was improved by the similar request .mso package, which added searching in the
tmac path, just like option −m does.

Note that in order to resolve the .so and .mso requests, the roff preprocessor soelim(1) must be called if
the files to be included need preprocessing. This can be done either directly by a pipeline on the com-
mand line or by using the troff/groff option −s. man calls soelim automatically.

For example, suppose a macro file is stored as

c:/progra 1/groff/share/groff/1.20/tmac/macros.tmac

and is used in some document called docu.roff .

At run-time, the formatter call for this is

sh# groff −m macros docu.roff

To include the macro file directly in the document either

.mso macros.tmac

is used or

.so c:/progra 1/groff/share/groff/1.20/tmac/macros.tmac

In both cases, the formatter should be called with option −s to invoke soelim.

sh# groff −s docu.roff

If you want to write your own groff macro file, call it whatever.tmac and put it in some directory of the
tmac path, see section FILES. Then documents can include it with the .mso request or the option −m.

WRITING MACROS
A roff(7) document is a text file that is enriched by predefined formatting constructs, such as requests,
escape sequences, strings, numeric registers, and macros from a macro package. These elements are
described in roff(7).

To giv e a document a personal style, it is most useful to extend the existing elements by defining some
macros for repeating tasks; the best place for this is near the beginning of the document or in a separate
file.

Macros without arguments are just like strings. But the full power of macros reveals when arguments
are passed with a macro call. Within the macro definition, the arguments are available as the escape
sequences \$1, . . ., \$9, \$[. . .], \$∗, and \$@, the name under which the macro was called is in \$0, and
the number of arguments is in register \n[.$]; see groff(7).

Copy-in Mode
The phase when groff reads a macro is called copy-in mode or copy mode in roff-talk. This is compara-
ble to the C preprocessing phase during the development of a program written in the C language.

In this phase, groff interprets all backslashes; that means that all escape sequences in the macro body
are interpreted and replaced by their value. For constant expressions, this is wanted, but strings and
registers that might change between calls of the macro must be protected from being evaluated. This is
most easily done by doubling the backslash that introduces the escape sequence. This doubling is most
important for the positional parameters. For example, to print information on the arguments that were
passed to the macro to the terminal, define a macro named ‘.print_args’, say.

.ds midpart was called with .de print_args . tm \f[I]\\$0\f[] \∗[midpart] \\n[.$] arguments:

. tm \\$∗ ..

When calling this macro by

.print_args arg1 arg2

the following text is printed to the terminal:

Groff Version 1.20 5 January 2009 4

GROFF_TMAC(5) GROFF_TMAC(5)

print_args was called with the following 2 arguments: arg1 arg2

Let’s analyze each backslash in the macro definition. As the positional parameters and the number of
arguments change with each call of the macro their leading backslash must be doubled, which results in
\\$∗ and \\[.$]. The same applies to the macro name because it could be called with an alias name, so
\\$0.

On the other hand, midpart is a constant string, it does not change, so no doubling for \∗[midpart]. The
\f escape sequences are predefined groff elements for setting the font within the text. Of course, this
behavior does not change, so no doubling with \f[I] and \f[].

Draft Mode
Writing groff macros is easy when the escaping mechanism is temporarily disabled. In groff, this is
done by enclosing the macro definition(s) into a pair of .eo and .ec requests. Then the body in the
macro definition is just like a normal part of the document — text enhanced by calls of requests,
macros, strings, registers, etc. For example, the code above can be written in a simpler way by

.eo .ds midpart was called with .de print_args . tm \f[I]\$0\f[] \∗[midpart] \n[.$] arguments:

. tm \$∗ .. .ec

Unfortunately, draft mode cannot be used universally. Although it is good enough for defining normal
macros, draft mode fails with advanced applications, such as indirectly defined strings, registers, etc.
An optimal way is to define and test all macros in draft mode and then do the backslash doubling as a
final step; do not forget to remove the .eo request.

Tips for Macro Definitions
• Start every line with a dot, for example, by using the groff request .nop for text lines, or write

your own macro that handles also text lines with a leading dot.

.de Text . if (\\n[.$] == 0) \ . return . nop \)\\$∗\) ..

• Write a comment macro that works both for copy-in and draft mode; for as escaping is off in
draft mode, trouble might occur when normal comments are used. For example, the following
macro just ignores its arguments, so it acts like a comment line:

.de c .. .c This is like a comment line.

• In long macro definitions, make ample use of comment lines or almost-empty lines (this is,
lines which have a leading dot and nothing else) for a better structuring.

• To increase readability, use groff’s indentation facility for requests and macro calls (arbitrary
whitespace after the leading dot).

Diversions
Diversions can be used to implement quite advanced programming constructs. They are comparable to
pointers to large data structures in the C programming language, but their usage is quite different.

In their simplest form, diversions are multi-line strings, but they get their power when diversions are
used dynamically within macros. The (formatted) information stored in a diversion can be retrieved by
calling the diversion just like a macro.

Most of the problems arising with diversions can be avoided if you remain aware of the fact that diver-
sions always store complete lines. If diversions are used when the line buffer has not been flushed,
strange results are produced; not knowing this, many people get desperate about diversions. To ensure
that a diversion works, line breaks should be added at the right places. To be on the secure side,
enclose everything that has to do with diversions into a pair of line breaks; for example, by explicitly
using .br requests. This rule should be applied to diversion definition, both inside and outside, and to
all calls of diversions. This is a bit of overkill, but it works nicely.

[If you really need diversions which should ignore the current partial line, use environments to save the
current partial line and/or use the .box request.]

The most powerful feature using diversions is to start a diversion within a macro definition and end it
within another macro. Then everything between each call of this macro pair is stored within the diver-
sion and can be manipulated from within the macros.

FILES
All macro names must be named name.tmac to fully use the tmac mechanism. tmac.name as with

Groff Version 1.20 5 January 2009 5

GROFF_TMAC(5) GROFF_TMAC(5)

classical packages is possible as well, but deprecated.

The macro files are kept in the tmac directories; a colon separated list of these constitutes the tmac

path.

The search sequence for macro files is (in that order):

• the directories specified with troff/groff’s −M command line option

• the directories given in the $GROFF_TMAC_PATH environment variable

• the current directory (only if in unsafe mode, which is enabled by the −U command line
switch)

• the home directory

• a platform-specific directory, being

c:/progra 1/groff/lib/groff/site-tmac

in this installation

• a site-specific (platform-independent) directory, being

c:/progra 1/groff/share/groff/site-tmac

in this installation

• the main tmac directory, being

c:/progra 1/groff/share/groff/1.20/tmac

in this installation

ENVIRONMENT
$GROFF_TMAC_PATH

A colon separated list of additional tmac directories in which to search for macro files. See
the previous section for a detailed description.

AUTHOR
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by Bernd Warken it is main-
tained by Werner Lemberg

SEE ALSO
A complete reference for all parts of the groff system is found in the groff info(1) file.

groff(1)
an overview of the groff system.

groff_man(7),
groff_mdoc(7),
groff_me(7),
groff_mm(7),
groff_mom(7),
groff_ms(7),
groff_trace(7),
groff_www(7).

the groff tmac macro packages.

groff(7)
the groff language.

The Filesystem Hierarchy Standard is available at the FHS web site

Groff Version 1.20 5 January 2009 6

LJ4_FONT(5) LJ4_FONT(5)

LJ4_FONT

NAME
lj4_font − groff fonts for use with devlj4

DESCRIPTION
Nominally, all Hewlett-Packard LaserJet 4–series and newer printers have the same internal fonts: 45
scalable fonts and one bitmapped Lineprinter font. The scalable fonts are available in sizes between
0.25 point and 999.75 points, in 0.25-point increments; the Lineprinter font is available only in
8.5-point size.

The LaserJet font files included with groff assume that all printers since the LaserJet 4 are identical.
There are some differences between fonts in the earlier and more recent printers, however. The Laser-
Jet 4 printer used Agfa Intellifont technology for 35 of the internal scalable fonts; the remaining 10
scalable fonts were TrueType. Beginning with the LaserJet 4000–series printers introduced in 1997, all
scalable internal fonts have been TrueType. The number of printable glyphs differs slightly between
Intellifont and TrueType fonts (generally, the TrueType fonts include more glyphs), and there are some
minor differences in glyph metrics. Differences among printer models are described in the PCL 5

Comparison Guide and the PCL 5 Comparison Guide Addendum (for printers introduced since approx-
imately 2001).

LaserJet printers reference a glyph by a combination of a 256-glyph symbol set and an index within
that symbol set. Many glyphs appear in more than one symbol set; all combinations of symbol set and
index that reference the same glyph are equivalent. For each glyph, hpftodit(1) searches a list of sym-
bol sets, and selects the first set that contains the glyph. The printing code generated by hpftodit(1) is
an integer that encodes a numerical value for the symbol set in the high byte(s), and the index in the
low byte. See groff_font(5) for a complete description of the font file format; symbol sets are
described in greater detail in the PCL 5 Printer Language Technical Reference Manual.

Tw o of the scalable fonts, Symbol and Wingdings, are bound to 256-glyph symbol sets; the remaining
scalable fonts, as well as the Lineprinter font, support numerous symbol sets, sufficient to enable print-
ing of more than 600 glyphs.

The metrics generated by hpftodit(1) assume that the DESC file contains values of 1200 for res and
6350 for unitwidth (or any combination (e.g., 2400 and 3175) for which res × unitwidth = 7 620 000).
Although HP PCL 5 LaserJet printers support an internal resolution of 7200 units per inch, they use a
16-bit signed integer for cursor positioning; if devlj4 is to support U.S. ledger paper (11″ × 17″), the
maximum usable resolution is 32 767 / 17, or 1927, units per inch, which rounds down to 1200 units
per inch. If the largest required paper size is less (e.g., 8.5″ × 11″ or A5), a greater resolution (and
lesser unitwidth) can be specified.

LIMITATIONS
Font metrics for Intellifont fonts were provided by Tagged Font Metric (TFM) files originally devel-
oped by Agfa/Compugraphic. The TFM files provided for these fonts supported 600+ glyphs and con-
tained extensive lists of kern pairs.

To accommodate developers who had become accustomed to TFM files, HP also provided TFM files
for the 10 TrueType fonts included in the LaserJet 4. The TFM files for TrueType fonts generally
included less information than the Intellifont TFMs, supporting fewer glyphs, and in most cases, pro-
viding no kerning information. By the time the LaserJet 4000 printer was introduced, most developers
had migrated to other means of obtaining font metrics, and support for new TFM files was very limited.
The TFM files provided for the TrueType fonts in the LaserJet 4000 support only the Latin 2 (ISO
8859-2) symbol set, and include no kerning information; consequently, they are of little value for any
but the most rudimentary documents.

Because the Intellifont TFM files contain considerably more information, they generally are preferable
to the TrueType TFM files even for use with the TrueType fonts in the newer printers. The metrics for
the TrueType fonts are very close, though not identical, to those for the earlier Intellifont fonts of the
same names. Although most output using the Intellifont metrics with the newer printers is quite accept-
able, a few glyphs may fail to print as expected. The differences in glyph metrics may be particularly
noticeable with composite parentheses, brackets, and braces used by eqn(1). A script, located in
c:/progra 1/groff/share/groff/1.20/font/devlj4/generate, can be used to adjust the metrics for these
glyphs in the special font S for use with printers that have all TrueType fonts.

At the time HP last supported TFM files, only Version 1 of the Unicode standard was available.

Groff Version 1.20 5 January 2009 1

LJ4_FONT(5) LJ4_FONT(5)

Consequently, many glyphs lacking assigned code points were assigned by HP to the Private Use Area
(PUA). Later versions of the Unicode standard included code points outside the PUA for many of these
glyphs. The HP-supplied TrueType TFM files use the PUA assignments; TFM files generated from
more recent TrueType font files require the later Unicode values to access the same glyphs. Conse-
quently, two different mapping files may be required: one for the HP-supplied TFM files, and one for
more recent TFM files.

FILES
c:/progra 1/groff/share/groff/1.20/font/devlj4/DESC

Device description file.

c:/progra 1/groff/share/groff/1.20/font/devlj4/F
Font description file for font F .

SEE ALSO
groff(1), groff_diff(1), hpftodit(1), grolj4(1), groff_font(5)

Groff Version 1.20 5 January 2009 2

DITROFF(7) DITROFF(7)

DITROFF

NAME
ditroff − classical device independent roff

DESCRIPTION
The name ditroff once marked a development level of the troff text processing system. In actual roff(7)
systems, the name troff is used as a synonym for ditroff .

The first roff system was written by Joe Ossanna around 1973. It supported only two output devices,
the nroff program produced text oriented tty output, while the troff program generated graphical output
for exactly one output device, the Wang Graphic Systems CAT typesetter.

In 1979, Brian Kernighan rewrote troff to support more devices by creating an intermediate output for-
mat for troff that can be fed into postprocessor programs which actually do the printout on the device.
Kernighan’s version marks what is known as classical troff today. In order to distinguish it from
Ossanna’s original mono-device version, it was called ditroff (device independent troff) on some sys-

tems, though this naming isn’t mentioned in the classical documentation.

Today, any existing roff system is based on Kernighan’s multi-device troff. The distinction between
troff and ditroff isn’t necessary any longer, for each modern troff provides already the complete func-
tionality of ditroff . On most systems, the name troff is used to denote ditroff .

The easiest way to use ditroff is the GNU roff system, groff . The groff(1) program is a wrapper around
(di)troff that automatically handles postprocessing.

SEE ALSO
[CSTR #54]

The 1992 revision of the Nroff/Troff User’s Manual by J. F. Ossanna and Brian Kernighan, see
Bell Labs CSTR #54

[CSTR #97]

A Typesetter-independent TROFF by Brian Kernighan is the original documentation of the
first multi-device troff (ditroff), see Bell Labs CSTR #97

roff(7) This document gives details on the history and concepts of roff.

troff(1) The actual implementation of ditroff .

groff(1)
The GNU roff program and pointers to all documentation around groff.

groff_out(5)
The groff version of the intermediate output language, the basis for multi-devicing.

AUTHORS
Copyright (C) 2001, 2002, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by Bernd Warken and is main-
tained by Werner Lemberg

Groff Version 1.20 5 January 2009 1

GROFF(7) GROFF(7)

GROFF

NAME
groff − a short reference for the GNU roff language

DESCRIPTION
The name groff stands for GNU roff and is the free implementation of the roff type-setting system. See
roff(7) for a survey and the background of the groff system.

This document gives only short descriptions of the predefined roff language elements as used in groff.
Both the classical features and the groff extensions are provided.

Historically, the roff language was called troff . groff is compatible with the classical system and pro-
vides proper extensions. So in GNU, the terms roff , troff , and groff language could be used as syn-
onyms. However troff slightly tends to refer more to the classical aspects, whereas groff emphasizes the
GNU extensions, and roff is the general term for the language.

This file is only a short version of the complete documentation that is found in the groff info(1) file,
which contains more detailed, actual, and concise information.

The general syntax for writing groff documents is relatively easy, but writing extensions to the roff lan-
guage can be a bit harder.

The roff language is line-oriented. There are only two kinds of lines, control lines and text lines. The
control lines start with a control character, by default a period “.” or a single quote “’”; all other lines
are text lines.

Control lines represent commands, optionally with arguments. They hav e the following syntax. The
leading control character can be followed by a command name; arguments, if any, are separated by spa-
ces (but not tab characters) from the command name and among themselves, for example,

.command_name arg1 arg2

For indentation, any number of space or tab characters can be inserted between the leading control
character and the command name, but the control character must be on the first position of the line.

Text lines represent the parts that is printed. They can be modified by escape sequences, which are rec-
ognized by a leading backslash ‘\’. These are in-line or even in-word formatting elements or func-
tions. Some of these take arguments separated by single quotes “’”, others are regulated by a length
encoding introduced by an open parenthesis ‘(’ or enclosed in brackets ‘[’ and ‘]’.

The roff language provides flexible instruments for writing language extension, such as macros. When
interpreting macro definitions, the roff system enters a special operating mode, called the copy mode.

The copy mode behavior can be quite tricky, but there are some rules that ensure a safe usage.

1. Printable backslashes must be denoted as \e. To be more precise, \e represents the current
escape character. To get a backslash glyph, use \(rs or \[rs].

2. Double all backslashes.

3. Begin all text lines with the special non-spacing character \&.

This does not produce the most efficient code, but it should work as a first measure. For better strate-
gies, see the groff info file and groff_tmac(5).

Reading roff source files is easier, just reduce all double backslashes to a single one in all macro defini-
tions.

GROFF ELEMENTS
The roff language elements add formatting information to a text file. The fundamental elements are
predefined commands and variables that make roff a full-blown programming language.

There are two kinds of roff commands, possibly with arguments. Requests are written on a line of
their own starting with a dot ‘.’ or a “’”, whereas Escape sequences are in-line functions and in-word
formatting elements starting with a backslash ‘\’.

The user can define her own formatting commands using the de request. These commands are called
macros, but they are used exactly like requests. Macro packages are pre-defined sets of macros written
in the groff language. A user’s possibilities to create escape sequences herself is very limited, only
special characters can be mapped.

Groff Version 1.20 5 January 2009 1

GROFF(7) GROFF(7)

The groff language provides several kinds of variables with different interfaces. There are pre-defined
variables, but the user can define her own variables as well.

String variables store character sequences. They are set with the ds request and retrieved by the \∗
escape sequences. Strings can have variables.

Register variables can store numerical values, numbers with a scale unit, and occasionally string-like
objects. They are set with the nr request and retrieved by the \n escape sequences.

Environments allow the user to temporarily store global formatting parameters like line length, font
size, etc. for later reuse. This is done by the ev request.

Fonts are identified either by a name or by an internal number. The current font is chosen by the ft
request or by the \f escape sequences. Each device has special fonts, but the following fonts are avail-
able for all devices. R is the standard font Roman. B is its bold counterpart. The italic font is called I
and is available everywhere, but on text devices it is displayed as an underlined Roman font. For the
graphical output devices, there exist constant-width pendants of these fonts, CR, CI, and CB. On text
devices, all glyphs have a constant width anyway.

Glyphs are visual representation forms of characters. In groff, the distinction between those two ele-
ments is not always obvious (and a full discussion is beyond the scope of this man page). A first
approximation is that glyphs have a specific size and colour and are taken from a specific font; they
can’t be modified any more – characters are the input, and glyphs are the output. As soon as an output
line has been generated, it no longer contains characters but glyphs. In this man page, we use either
‘glyph’ or ‘character’, whatever is more appropriate.

Moreover, there are some advanced roff elements. A diversion stores (formatted) information into a
macro for later usage. A trap is a positional condition like a certain number of lines from page top or
in a diversion or in the input. Some action can be prescribed to be run automatically when the condi-
tion is met.

More detailed information and examples can be found in the groff info file.

CONTROL CHARACTERS
There is a small set of characters that have a special controlling task in certain conditions.

. A dot is only special at the beginning of a line or after the condition in the requests if, ie, el,
and while. There it is the control character that introduces a request (or macro). The special
behavior can be delayed by using the \. escape. By using the cc request, the control character
can be set to a different character, making the dot ‘.’ a non-special character.

In all other positions, it just means a dot character. In text paragraphs, it is advantageous to
start each sentence at a line of its own.

’ The single quote has two controlling tasks. At the beginning of a line and in the conditional
requests it is the non-breaking control character. That means that it introduces a request like
the dot, but with the additional property that this request doesn’t cause a linebreak. By using
the c2 request, the non-break control character can be set to a different character.

As a second task, it is the most commonly used argument separator in some functional escape
sequences (but any pair of characters not part of the argument do work). In all other positions,
it denotes the single quote or apostrophe character. Groff provides a printable representation
with the \(cq escape sequence.

" The double quote is used to enclose arguments in macros (but not in requests and strings). In
the ds and as requests, a leading double quote in the argument is stripped off, making every-
thing else afterwards the string to be defined (enabling leading whitespace). The escaped dou-
ble quote \" introduces a comment. Otherwise, it is not special. Groff provides a printable
representation with the \(dq escape sequence.

\ The backslash usually introduces an escape sequence (this can be changed with the ec
request). A printed version of the escape character is the \e escape; a backslash glyph can be
obtained by \(rs.

(The open parenthesis is only special in escape sequences when introducing an escape name or
argument consisting of exactly two characters. In groff, this behavior can be replaced by the
[] construct.

Groff Version 1.20 5 January 2009 2

GROFF(7) GROFF(7)

[The opening bracket is only special in groff escape sequences; there it is used to introduce a
long escape name or long escape argument. Otherwise, it is non-special, e.g. in macro calls.

] The closing bracket is only special in groff escape sequences; there it terminates a long escape
name or long escape argument. Otherwise, it is non-special.

space Space characters are only functional characters. They separate the arguments in requests,
macros, and strings, and the words in text lines. They are subject to groff’s horizontal spacing
calculations. To get a defined space width, escape sequences like ‘\ ’ (this is the escape char-
acter followed by a space), \|, \ˆ, or \h should be used.

newline

In text paragraphs, newlines mostly behave like space characters. Continuation lines can be
specified by an escaped newline, i.e., by specifying a backslash ‘\’ as the last character of a
line.

tab If a tab character occurs during text the interpreter makes a horizontal jump to the next pre-
defined tab position. There is a sophisticated interface for handling tab positions.

NUMERICAL EXPRESSIONS
A numerical value is a signed or unsigned integer or float with or without an appended scaling indica-
tor. A scaling indicator is a one-character abbreviation for a unit of measurement. A number followed
by a scaling indicator signifies a size value. By default, numerical values do not have a scaling indica-
tor, i.e., they are normal numbers.

The roff language defines the following scaling indicators.

c Centimeter
i Inch
P Pica = 1/6 inch
p Point = 1/72 inch
m Em = the font size in points (approx. width of letter ‘m’)
M 100 th of an Em
n En = Em/2
u Basic unit for actual output device
v Vertical line space in basic units scaled point = 1/sizescale of a point (defined

in font DESC file)
f Scale by 65536.

Numerical expressions are combinations of the numerical values defined above with the following
arithmetical operators already defined in classical troff.

+ Addition
− Subtraction
∗ Multiplication
/ Division
% Modulo
= Equals
== Equals
< Less than
> Greater than
<= Less or equal
>= Greater or equal
& Logical and
: Logical or
! Logical not
(Grouping of expressions
) Close current grouping

Moreover, groff added the following operators for numerical expressions:

e1>?e2 The maximum of e1 and e2.
e1<?e2 The minimum of e1 and e2.

(c;e) Evaluate e using c as the default scaling indicator.

For details see the groff info file.

Groff Version 1.20 5 January 2009 3

GROFF(7) GROFF(7)

CONDITIONS
Conditions occur in tests raised by the if, ie, and the while requests. The following table characterizes
the different types of conditions.

N A numerical expression N yields true if its value is greater than 0.
!N True if the value of I is 0.
’s1’s2’ True if string s1 is identical to string s2.
!’s1’s2’ True if string s1 is not identical to string s2.
cch True if there is a glyph ch available.
dname True if there is a string, macro, diversion, or request called name.
e Current page number is even.
o Current page number is odd.
mname True if there is a color called name.
n Formatter is nroff.
rreg True if there is a register named reg.
t Formatter is troff.
F font True if there exists a font named font.
Sstyle True if a style named style has been registered.

REQUESTS
This section provides a short reference for the predefined requests. In groff, request, macro, and string
names can be arbitrarily long. No bracketing or marking of long names is needed.

Most requests take one or more arguments. The arguments are separated by space characters (no
tabs!); there is no inherent limit for their length or number.

Some requests have optional arguments with a different behaviour. Not all of these details are outlined
here. Refer to the groff info file and groff_diff(7) for all details.

In the following request specifications, most argument names were chosen to be descriptive. Only the
following denotations need clarification.

c denotes a single character.
font a font either specified as a font name or a font number.
anything all characters up to the end of the line or within \{ and \}.
n is a numerical expression that evaluates to an integer value.
N is an arbitrary numerical expression, signed or unsigned.
±N has three meanings depending on its sign, described below.

If an expression defined as ±N starts with a ‘+’ sign the resulting value of the expression is added to an
already existing value inherent to the related request, e.g. adding to a number register. If the expression
starts with a ‘-’ the value of the expression is subtracted from the request value.

Without a sign, N replaces the existing value directly. To assign a negative number either prepend 0 or
enclose the negative number in parentheses.

Request Short Reference
. Empty line, ignored. Useful for structuring documents.
.\" anything

Complete line is a comment.
.ab string

Print string on standard error, exit program.
.ad Begin line adjustment for output lines in current adjust mode.
.ad c Start line adjustment in mode c (c =l,r,b,n).
.af register c

Assign format c to register (c =l,i,I,a,A).
.aln alias register

Create alias name for register.
.als alias object

Create alias name for request, string, macro, or diversion object.
.am macro

Append to macro until .. is encountered.
.am macro end

Append to macro until .end is called.

Groff Version 1.20 5 January 2009 4

GROFF(7) GROFF(7)

.am1 macro

Same as .am but with compatibility mode switched off during macro expansion.
.am1 macro end

Same as .am but with compatibility mode switched off during macro expansion.
.ami macro

Append to a macro whose name is contained in the string register macro until .. is encoun-
tered.

.ami macro end

Append to a macro indirectly. macro and end are string registers whose contents are inter-
polated for the macro name and the end macro, respectively.

.ami1 macro

Same as .ami but with compatibility mode switched off during macro expansion.
.ami1 macro end

Same as .ami but with compatibility mode switched off during macro expansion.
.as stringvar anything

Append anything to stringvar.
.as1 stringvar anything

Same as .as but with compatibility mode switched off during string expansion.
.asciify diversion

Unformat ASCII characters, spaces, and some escape sequences in diversion.
.backtrace

Print a backtrace of the input on stderr.
.bd font N

Embolden font by N -1 units.
.bd S font N

Embolden Special Font S when current font is font.
.blm Unset the blank line macro.
.blm macro

Set the blank line macro to macro.
.box End current diversion.
.box macro

Divert to macro, omitting a partially filled line.
.boxa End current diversion.
.boxa macro

Divert and append to macro, omitting a partially filled line.
.bp Eject current page and begin new page.
.bp ±N Eject current page; next page number ±N .
.br Line break.
.brp Break and spread output line. Same as \p.
.break Break out of a while loop.
.c2 Reset no-break control character to “’”.
.c2 c Set no-break control character to c.
.cc Reset control character to ‘.’.
.cc c Set control character to c.
.ce Center the next input line.
.ce N Center following N input lines.
.cf filename

Copy contents of file filename unprocessed to stdout or to the diversion.
.cflags mode c1 c2 . . .

Treat characters c1, c2, . . . according to mode number.
.ch trap N

Change trap location to N .
.char c anything

Define entity c as string anything.
.chop object

Chop the last character off macro, string, or diversion object.

.close stream

Close the stream.

Groff Version 1.20 5 January 2009 5

GROFF(7) GROFF(7)

.color Enable colors.

.color N

If N is zero disable colors, otherwise enable them.
.composite from to

Map glyph name from to glyph name to while constructing a composite glyph name.
.continue

Finish the current iteration of a while loop.
.cp Enable compatibility mode.
.cp N If N is zero disable compatibility mode, otherwise enable it.
.cs font N M

Set constant character width mode for font to N /36 ems with em M .
.cu N Continuous underline in nroff, like .ul in troff.
.da End current diversion.
.da macro

Divert and append to macro.
.de macro

Define or redefine macro until .. is encountered.
.de macro end

Define or redefine macro until .end is called.
.de1 macro

Same as .de but with compatibility mode switched off during macro expansion.
.de1 macro end

Same as .de but with compatibility mode switched off during macro expansion.
.defcolor color scheme component

Define or redefine a color with name color. scheme can be rgb, cym, cymk, gray, or
grey. component can be single components specified as fractions in the range 0 to 1
(default scaling indicator f), as a string of two-digit hexadecimal color components with a
leading #, or as a string of four-digit hexadecimal components with two leading #. The
color default can’t be redefined.

.dei macro

Define or redefine a macro whose name is contained in the string register macro until .. is
encountered.

.dei macro end

Define or redefine a macro indirectly. macro and end are string registers whose contents
are interpolated for the macro name and the end macro, respectively.

.dei1 macro

Same as .dei but with compatibility mode switched off during macro expansion.
.dei1 macro end

Same as .dei but with compatibility mode switched off during macro expansion.
.device anything

Write anything to the intermediate output as a device control function.
.devicem name

Write contents of macro or string name uninterpreted to the intermediate output as a device
control function.

.di End current diversion.

.di macro

Divert to macro.
.do name

Interpret .name with compatibility mode disabled.
.ds stringvar anything

Set stringvar to anything.
.ds1 stringvar anything

Same as .ds but with compatibility mode switched off during string expansion.
.dt N trap

Set diversion trap to position N (default scaling indicator v).
.ec Reset escape character to ‘\’.

.ec c Set escape character to c.

Groff Version 1.20 5 January 2009 6

GROFF(7) GROFF(7)

.ecr Restore escape character saved with .ecs.

.ecs Save current escape character.

.el anything

Else part for if-else (ie) request.
.em macro

The macro is run after the end of input.
.eo Turn off escape character mechanism.
.ev Switch to previous environment and pop it off the stack.
.ev env Push down environment number or name env to the stack and switch to it.
.evc env Copy the contents of environment env to the current environment. No pushing or popping.
.ex Exit from roff processing.
.fam Return to previous font family.
.fam name

Set the current font family to name.
.fc Disable field mechanism.
.fc a Set field delimiter to a and pad glyph to space.
.fc a b Set field delimiter to a and pad glyph to b.
.fchar c anything

Define fallback character (or glyph) c as string anything.
.fcolor Set fill color to previous fill color.
.fcolor c

Set fill color to c.
.fi Fill output lines.
.fl Flush output buffer.
.fp n font

Mount font on position n.
.fp n internal external

Mount font with long external name to short internal name on position n.
.fschar f c anything

Define fallback character (or glyph) c for font f as string anything.
.fspecial font

Reset list of special fonts for font to be empty.
.fspecial font s1 s2 . . .

When the current font is font, then the fonts s1, s2, . . . are special.
.ft Return to previous font. Same as \f[] or \fP.
.ft font Change to font name or number font; same as \f[font] escape sequence.
.ftr font1 font2

Translate font1 to font2.
.fzoom font

Don’t magnify font.
.fzoom font zoom

Set zoom factor for font (in multiples of 1/1000th).
.gcolor Set glyph color to previous glyph color.
.gcolor c

Set glyph color to c.
.hc Remove additional hyphenation indicator character.
.hc c Set up additional hyphenation indicator character c.
.hcode c1 code1 c2 code2 . . .

Set the hyphenation code of character c1 to code1, that of c2 to code2, etc.
.hla lang

Set the current hyphenation language to lang.
.hlm n Set the maximum number of consecutive hyphenated lines to n.
.hpf file Read hyphenation patterns from file.
.hpfa file

Append hyphenation patterns from file.

.hpfcode a b c d . . .

Set input mapping for .hpf.

Groff Version 1.20 5 January 2009 7

GROFF(7) GROFF(7)

.hw words

List of words with exceptional hyphenation.
.hy N Switch to hyphenation mode N .
.hym n Set the hyphenation margin to n (default scaling indicator m).
.hys n Set the hyphenation space to n.
.ie cond anything

If cond then anything else goto .el.
.if cond anything

If cond then anything; otherwise do nothing.
.ig Ignore text until .. is encountered.
.ig end Ignore text until .end is called.
.in Change to previous indentation value.
.in ±N Change indentation according to ±N (default scaling indicator m).
.it N trap

Set an input-line count trap for the next N lines.
.itc N trap

Same as .it but count lines interrupted with \c as one line.
.kern Enable pairwise kerning.
.kern n If n is zero, disable pairwise kerning, otherwise enable it.
.lc Remove leader repetition glyph.
.lc c Set leader repetition glyph to c.
.length register anything

Write the length of the string anything to register.
.linetabs

Enable line-tabs mode (i.e., calculate tab positions relative to output line).
.linetabs n

If n is zero, disable line-tabs mode, otherwise enable it.
.lf N Set input line number to N .
.lf N file

Set input line number to N and filename to file.
.lg N Ligature mode on if N>0.
.ll Change to previous line length.
.ll ±N Set line length according to ±N (default length 6.5i, default scaling indicator m).
.ls Change to the previous value of additional intra-line skip.
.ls N Set additional intra-line skip value to N , i.e., N -1 blank lines are inserted after each text

output line.
.lt ±N Length of title (default scaling indicator m).
.mc Margin glyph off.
.mc c Print glyph c after each text line at actual distance from right margin.
.mc c N Set margin glyph to c and distance to N from right margin (default scaling indicator m).
.mk register

Mark current vertical position in register.
.mso file The same as .so except that file is searched in the tmac directories.
.na No output-line adjusting.
.ne Need a one-line vertical space.
.ne N Need N vertical space (default scaling indicator v).
.nf No filling or adjusting of output-lines.
.nh No hyphenation.
.nm Number mode off.
.nm ±N [M [S [I]]]

In line number mode, set number, multiple, spacing, and indentation.
.nn Do not number next line.
.nn N Do not number next N lines.
.nop anything

Always process anything.

.nr register ±N [M]
Define or modify register using ±N with auto-increment M .

Groff Version 1.20 5 January 2009 8

GROFF(7) GROFF(7)

.nroff Make the built-in conditions n true and t false.

.ns Turn on no-space mode.

.nx Immediately jump to end of current file.

.nx filename

Immediately continue processing with file file.
.open stream filename

Open filename for writing and associate the stream named stream with it.
.opena stream filename

Like .open but append to it.
.os Output vertical distance that was saved by the sv request.
.output string

Emit string directly to intermediate output, allowing leading whitespace if string starts
with " (which is stripped off).

.pc Reset page number character to ‘%’.

.pc c Page number character.

.pev Print the current environment and each defined environment state to stderr.

.pi program

Pipe output to program (nroff only).
.pl Set page length to default 11i. The current page length is stored in register .p.
.pl ±N Change page length to ±N (default scaling indicator v).
.pm Print macro names and sizes (number of blocks of 128 bytes).
.pm t Print only total of sizes of macros (number of 128 bytes blocks).
.pn ±N Next page number N .
.pnr Print the names and contents of all currently defined number registers on stderr.
.po Change to previous page offset. The current page offset is available in register .o.
.po ±N Page offset N .
.ps Return to previous point size.
.ps ±N Point size; same as \s[±N].
.psbb filename

Get the bounding box of a PostScript image filename.
.pso command

This behaves like the so request except that input comes from the standard output of com-

mand .
.ptr Print the names and positions of all traps (not including input line traps and diversion

traps) on stderr.
.pvs Change to previous post-vertical line spacing.
.pvs ±N Change post-vertical line spacing according to ±N (default scaling indicator p).
.rchar c1 c2 . . .

Remove the definitions of entities c1, c2, . . .

.rd prompt

Read insertion.
.return Return from a macro.
.return anything

Return twice, namely from the macro at the current level and from the macro one level
higher.

.rfschar f c1 c2 . . .

Remove the definitions of entities c1, c2, . . . for font f .
.rj n Right justify the next n input lines.
.rm name

Remove request, macro, or string name.
.rn old new

Rename request, macro, or string old to new.
.rnn reg1 reg2

Rename register reg1 to reg2.
.rr register

Remove register.

.rs Restore spacing; turn no-space mode off.

Groff Version 1.20 5 January 2009 9

GROFF(7) GROFF(7)

.rt ±N Return (upward only) to marked vertical place (default scaling indicator v).

.schar c anything

Define global fallback character (or glyph) c as string anything.
.shc Reset soft hyphen glyph to \(hy.
.shc c Set the soft hyphen glyph to c.
.shift n

In a macro, shift the arguments by n positions.
.sizes s1 s2 . . . sn [0]

Set available font sizes similar to the sizes command in a DESC file.
.so filename

Include source file.
.sp Skip one line vertically.
.sp N Space vertical distance N up or down according to sign of N (default scaling indicator v).
.special

Reset global list of special fonts to be empty.
.special s1 s2 . . .

Fonts s1, s2, etc. are special and are searched for glyphs not in the current font.
.spreadwarn

Toggle the spread warning on and off without changing its value.
.spreadwarn limit

Emit a warning if each space in an output line is widened by limit or more (default scaling
indicator m).

.ss N Set space glyph size to N /12 of the space width in the current font.

.ss N M Set space glyph size to N /12 and sentence space size set to M /12 of the space width in the
current font.

.sty n style

Associate style with font position n.
.substring xx n1 n2

Replace the string named xx with the substring defined by the indices n1 and n2.
.sv Save 1 v of vertical space.
.sv N Save the vertical distance N for later output with os request (default scaling indicator v).
.sy command-line

Execute program command-line.
.ta T N Set tabs after every position that is a multiple of N (default scaling indicator m).
.ta n1 n2 . . . nn T r1 r2 . . . rn

Set tabs at positions n1, n2, . . ., nn, then set tabs at nn+r1, nn+r2, . . ., nn+rn, then at
nn+rn+r1, nn+rn+r2, . . ., nn+rn+rn, and so on.

.tc Remove tab repetition glyph.

.tc c Set tab repetition glyph to c.

.ti ±N Temporary indent next line (default scaling indicator m).

.tkf font s1 n1 s2 n2

Enable track kerning for font.
.tl ’left’center’right’

Three-part title.
.tm anything

Print anything on stdout.
.tm1 anything

Print anything on stdout, allowing leading whitespace if anything starts with " (which is
stripped off).

.tmc anything

Similar to .tm1 without emitting a final newline.
.tr abcd. . .

Translate a to b, c to d , etc. on output.
.trf filename

Transparently output the contents of file filename.

.trin abcd. . .

This is the same as the tr request except that the asciify request uses the character code (if

Groff Version 1.20 5 January 2009 10

GROFF(7) GROFF(7)

any) before the character translation.
.trnt abcd. . .

This is the same as the tr request except that the translations do not apply to text that is
transparently throughput into a diversion with \!.

.troff Make the built-in conditions t true and n false.

.uf font Set underline font to font (to be switched to by .ul).

.ul N Underline (italicize in troff) N input lines.

.unformat diversion

Unformat space characters and tabs in diversion, preserving font information.
.vpt n Enable vertical position traps if n is non-zero, disable them otherwise.
.vs Change to previous vertical base line spacing.
.vs ±N Set vertical base line spacing to ±N (default scaling indicator p).
.warn n Set warnings code to n.
.warnscale si

Set scaling indicator used in warnings to si.
.wh N Remove (first) trap at position N .
.wh N trap

Set location trap; negative means from page bottom.
.while cond anything

While condition cond is true, accept anything as input.
.write stream anything

Write anything to the stream named stream.
.writec stream anything

Similar to .write without emitting a final newline.
.writem stream xx

Write contents of macro or string xx to the stream named stream.

Besides these standard groff requests, there might be further macro calls. They can originate from a
macro package (see roff(7) for an overview) or from a preprocessor.

Preprocessor macros are easy to be recognized. They enclose their code into a pair of characteristic
macros.

preprocessor start macro end macro

eqn .EQ .EN

grap .G1 .G2

grn .GS .GE

pic .PS .PE

refer .R1 .R2

soelim none none

tbl .TS .TE

ESCAPE SEQUENCES
Escape sequences are in-line language elements usually introduced by a backslash ‘\’ and followed by
an escape name and sometimes by a required argument. Input processing is continued directly after the
escaped character or the argument (without an intervening separation character). So there must be a
way to determine the end of the escape name and the end of the argument.

This is done by enclosing names (escape name and arguments consisting of a variable name) by a pair
of brackets [name] and constant arguments (number expressions and characters) by apostrophes
(ASCII 0x27) like ’constant’.

There are abbreviations for short names. Tw o-character escape names can be specified by an opening
parenthesis like \(xy or \∗(xy without a closing counterpart. And all one-character names different
from the special characters ‘[’ and ‘(’ can even be specified without a marker, for example \nc or \$c.

Constant arguments of length 1 can omit the marker apostrophes, too, but there is no two-character ana-
logue.

While one-character escape sequences are mainly used for in-line functions and system related tasks,
the two-letter names following the \(construct are glyphs predefined by the roff system; these are
called ‘Special Characters’ in the classical documentation. Escapes sequences of the form \[name]
denote glyphs too.

Groff Version 1.20 5 January 2009 11

GROFF(7) GROFF(7)

Single-Character Escapes
\" Start of a comment. Everything up to the end of the line is ignored.
\# Everything up to and including the next newline is ignored. This is interpreted in copy mode.

This is like \" except that the terminating newline is ignored as well.
\∗s The string stored in the string variable with one-character name s.
\∗(st The string stored in the string variable with two-character name st.
\∗[string]

The string stored in the string variable with name string (with arbitrary length).
\∗[stringvar arg1 arg2 . . .]

The string stored in the string variable with arbitrarily long name stringvar, taking arg1, arg2,
. . . as arguments.

\$0 The name by which the current macro was invoked. The als request can make a macro have
more than one name.

\$x Macro or string argument with one-digit number x in the range 1 to 9.
\$(xy Macro or string argument with two-digit number xy (larger than zero).
\$[nexp]

Macro or string argument with number nexp, where nexp is a numerical expression evaluating
to an integer ≥1.

\$∗ In a macro or string, the concatenation of all the arguments separated by spaces.
\$@ In a macro or string, the concatenation of all the arguments with each surrounded by double

quotes, and separated by spaces.
\$ˆ In a macro, the representation of all parameters as if they were an argument to the ds request.
\\ reduces to a single backslash; useful to delay its interpretation as escape character in copy

mode. For a printable backslash, use \e, or even better \[rs], to be independent from the cur-
rent escape character.

\’ The acute accent ´; same as \(aa. Unescaped: apostrophe, right quotation mark, single quote
(ASCII 0x27).

\‘ The grave accent `; same as \(ga. Unescaped: left quote, backquote (ASCII 0x60).
\- The − (minus) sign in the current font.
_ The same as \(ul, the underline character.
\. An uninterpreted dot (period), even at start of line.
\% Default optional hyphenation character.
\! Transparent line indicator.
\?anything?

In a diversion, this transparently embeds anything in the diversion. anything is read in copy
mode. See also the escape sequences \! and \?.

\space Unpaddable space size space glyph (no line break).
\0 Digit-width space.
\| 1/6 em narrow space glyph; zero width in nroff.
\ˆ 1/12 em half-narrow space glyph; zero width in nroff.
\& Non-printable, zero-width glyph.
\) Like \& except that it behaves like a glyph declared with the cflags request to be transparent

for the purposes of end-of-sentence recognition.
\/ Increases the width of the preceding glyph so that the spacing between that glyph and the fol-

lowing glyph is correct if the following glyph is a roman glyph.
\, Modifies the spacing of the following glyph so that the spacing between that glyph and the

preceding glyph is correct if the preceding glyph is a roman glyph.
\ Unbreakable space that stretches like a normal inter-word space when a line is adjusted.
\: Inserts a zero-width break point (similar to \% but without a soft hyphen character).
\newline

Ignored newline, for continuation lines.
\{ Begin conditional input.
\} End conditional input.
\(sc A glyph with two-character name sc; see section Special Characters.
\[name]

A glyph with name name (of arbitrary length).

\[comp1 comp2 . . .]

A composite glyph with components comp1, comp2, . . .

Groff Version 1.20 5 January 2009 12

GROFF(7) GROFF(7)

\a Non-interpreted leader character.
\A’anything’

If anything is acceptable as a name of a string, macro, diversion, register, environment or font
it expands to 1, and to 0 otherwise.

\b’abc. . .’

Bracket building function.
\B’anything’

If anything is acceptable as a valid numeric expression it expands to 1, and to 0 otherwise.
\c Interrupt text processing.
\C’glyph’

The glyph called glyph; same as \[glyph], but compatible to other roff versions.
\d Forward (down) 1/2 em (1/2 line in nroff).
\D’charseq’

Draw a graphical element defined by the characters in charseq; see the groff info file for
details.

\e Printable version of the current escape character.
\E Equivalent to an escape character, but is not interpreted in copy mode.
\fF Change to font with one-character name or one-digit number F .
\fP Switch back to previous font.
\f(fo Change to font with two-character name or two-digit number fo.
\f[font]

Change to font with arbitrarily long name or number expression font.
\f[] Switch back to previous font.
\F f Change to font family with one-character name f .
\F(fm Change to font family with two-character name fm.
\F[fam]

Change to font family with arbitrarily long name fam.
\F[] Switch back to previous font family.
\gr Return format of register with one-character name r suitable for af request.
\g(rg Return format of register with two-character name rg suitable for af request.
\g[reg]

Return format of register with arbitrarily long name reg suitable for af request.
\h’N’ Local horizontal motion; move right N (left if negative).
\H’N’ Set height of current font to N .
\kr Mark horizontal input place in one-character register r.
\k(rg Mark horizontal input place in two-character register rg.
\k[reg]

Mark horizontal input place in register with arbitrarily long name reg.
\l’Nc’

Horizontal line drawing function (optionally using character c).
\L’Nc’

Vertical line drawing function (optionally using character c).
\mc Change to color with one-character name c.
\m(cl Change to color with two-character name cl.
\m[color]

Change to color with arbitrarily long name color.
\m[] Switch back to previous color.
\Mc Change filling color for closed drawn objects to color with one-character name c.
\M(cl Change filling color for closed drawn objects to color with two-character name cl.
\M[color]

Change filling color for closed drawn objects to color with arbitrarily long name color.
\M[] Switch to previous fill color.
\nr The numerical value stored in the register variable with the one-character name r.
\n(re The numerical value stored in the register variable with the two-character name re.
\n[reg]

The numerical value stored in the register variable with arbitrarily long name reg.

\N’n’ Typeset the glyph with index n in the current font. No special fonts are searched. Useful for
adding (named) entities to a document using the char request and friends.

Groff Version 1.20 5 January 2009 13

GROFF(7) GROFF(7)

\o’abc. . .’

Overstrike glyphs a, b, c, etc.
\O0 Disable glyph output. Mainly for internal use.
\O1 Enable glyph output. Mainly for internal use.
\p Break and spread output line.
\r Reverse 1 em vertical motion (reverse line in nroff).
\R’name ±n’

The same as .nr name ±n.
\s±N Set/increase/decrease the point size to/by N scaled points; N is a one-digit number in the range

1 to 9. Same as ps request.
\s(±N

\s±(N

Set/increase/decrease the point size to/by N scaled points; N is a two-digit number ≥1. Same
as ps request.

\s[±N]

\s±[N]

\s’±N’

\s±’N’

Set/increase/decrease the point size to/by N scaled points. Same as ps request.
\S’N’ Slant output by N degrees.
\t Non-interpreted horizontal tab.
\u Reverse (up) 1/2 em vertical motion (1/2 line in nroff).
\v’N’ Local vertical motion; move down N (up if negative).
\Ve The contents of the environment variable with one-character name e.
\V(ev The contents of the environment variable with two-character name ev.
\V[env]

The contents of the environment variable with arbitrarily long name env.
\w’string’

The width of the glyph sequence string.
\x’N’ Extra line-space function (negative before, positive after).
\X’string’

Output string as device control function.
\Yn Output string variable or macro with one-character name n uninterpreted as device control

function.
\Y(nm Output string variable or macro with two-character name nm uninterpreted as device control

function.
\Y[name]

Output string variable or macro with arbitrarily long name name uninterpreted as device con-
trol function.

\zc Print c with zero width (without spacing).
\Z’anything’

Print anything and then restore the horizontal and vertical position; anything may not contain
tabs or leaders.

The escape sequences \e, \., \", \$, \∗, \a, \n, \t, \g, and \newline are interpreted in copy mode.

Escape sequences starting with \(or \[do not represent single character escape sequences, but introduce
escape names with two or more characters.

If a backslash is followed by a character that does not constitute a defined escape sequence, the back-
slash is silently ignored and the character maps to itself.

Special Characters
[Note: ‘Special Characters’ is a misnomer; those entities are (output) glyphs, not (input) characters.]

Common special characters are predefined by escape sequences of the form \(xy with characters x and
y. Some of these exist in the usual font while most of them are only available in the special font.
Below you can find a selection of the most important glyphs; a complete list can be found in
groff_char(7).

\(bu Bullet sign

Groff Version 1.20 5 January 2009 14

GROFF(7) GROFF(7)

\(co Copyright
\(ct Cent
\(dd Double dagger
\(de Degree
\(dg Dagger
\(rq Printable double quote
\(em Em-dash
\(hy Hyphen
\(rg Registered sign
\(rs Printable backslash character
\(sc Section sign
\(ul Underline character
\(== Identical
\(>= Larger or equal
\(<= Less or equal
\(!= Not equal
\(-> Right arrow
\(<- Left arrow
\(+- Plus-minus sign

Strings
Strings are defined by the ds request and can be retrieved by the \∗ escape sequence.

Strings share their name space with macros. So strings and macros without arguments are roughly
equivalent; it is possible to call a string like a macro and vice-versa, but this often leads to unpre-
dictable results. The following string is the only one predefined in groff.

\∗[.T] The name of the current output device as specified by the −T command line option.

REGISTERS
Registers are variables that store a value. In groff, most registers store numerical values (see section
NUMERICAL EXPRESSIONS above), but some can also hold a string value.

Each register is given a name. Arbitrary registers can be defined and set with the nr request.

The value stored in a register can be retrieved by the escape sequences introduced by \n.

Most useful are predefined registers. In the following the notation name is used to refer to register
name to make clear that we speak about registers. Please keep in mind that the \n[] decoration is not
part of the register name.

Read-only Registers
The following registers have predefined values that should not be modified by the user (usually, regis-
ters starting with a dot a read-only). Mostly, they provide information on the current settings or store
results from request calls.

\n[.$] Number of arguments in the current macro or string.
\n[.a] Post-line extra line-space most recently utilized using \x.
\n[.A] Set to 1 in troff if option −A is used; always 1 in nroff.
\n[.br] Within a macro, set to 1 if macro called with the ‘normal’ control character, and to 0 other-

wise.
\n[.c] Current input line number.
\n[.C] 1 if compatibility mode is in effect, 0 otherwise.
\n[.cdp] The depth of the last glyph added to the current environment. It is positive if the glyph

extends below the baseline.
\n[.ce] The number of lines remaining to be centered, as set by the ce request.
\n[.cht] The height of the last glyph added to the current environment. It is positive if the glyph

extends above the baseline.
\n[.color]

1 if colors are enabled, 0 otherwise.
\n[.csk] The skew of the last glyph added to the current environment. The skew of a glyph is how

far to the right of the center of a glyph the center of an accent over that glyph should be
placed.

Groff Version 1.20 5 January 2009 15

GROFF(7) GROFF(7)

\n[.d] Current vertical place in current diversion; equal to register nl.
\n[.ev] The name or number of the current environment (string-valued).
\n[.f] Current font number.
\n[.fam] The current font family (string-valued).
\n[.fn] The current (internal) real font name (string-valued).
\n[.fp] The number of the next free font position.
\n[.g] Always 1 in GNU troff. Macros should use it to test if running under groff.
\n[.h] Text base-line high-water mark on current page or diversion.
\n[.H] Available horizontal resolution in basic units.
\n[.height]

The current font height as set with \H.
\n[.hla] The current hyphenation language as set by the hla request.
\n[.hlc] The number of immediately preceding consecutive hyphenated lines.
\n[.hlm] The maximum allowed number of consecutive hyphenated lines, as set by the hlm request.
\n[.hy] The current hyphenation flags (as set by the hy request).
\n[.hym] The current hyphenation margin (as set by the hym request).
\n[.hys] The current hyphenation space (as set by the hys request).
\n[.i] Current indentation.
\n[.in] The indentation that applies to the current output line.
\n[.int] Positive if last output line contains \c.
\n[.kern] 1 if pairwise kerning is enabled, 0 otherwise.
\n[.l] Current line length.
\n[.lg] The current ligature mode (as set by the lg request).
\n[.linetabs]

The current line-tabs mode (as set by the linetabs request).
\n[.ll] The line length that applies to the current output line.
\n[.lt] The title length (as set by the lt request).
\n[.m] The current drawing color (string-valued).
\n[.M] The current background color (string-valued).
\n[.n] Length of text portion on previous output line.
\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung.

Useful in conjunction with register .trunc.
\n[.ns] 1 if in no-space mode, 0 otherwise.
\n[.o] Current page offset.
\n[.p] Current page length.
\n[.pe] 1 during page ejection, 0 otherwise.
\n[.pn] The number of the next page: either the value set by a pn request, or the number of the cur-

rent page plus 1.
\n[.ps] The current point size in scaled points.
\n[.psr] The last-requested point size in scaled points.
\n[.pvs] The current post-vertical line spacing.
\n[.rj] The number of lines to be right-justified as set by the rj request.
\n[.s] Current point size as a decimal fraction.
\n[.slant]

The slant of the current font as set with \S.
\n[.sr] The last requested point size in points as a decimal fraction (string-valued).
\n[.ss] The value of the parameters set by the first argument of the ss request.
\n[.sss] The value of the parameters set by the second argument of the ss request.
\n[.sty] The current font style (string-valued).
\n[.t] Vertical distance to the next trap.
\n[.T] Set to 1 if option −T is used.
\n[.tabs] A string representation of the current tab settings suitable for use as an argument to the ta

request.
\n[.trunc]

The amount of vertical space truncated by the most recently sprung vertical position trap,
or, if the trap was sprung by a ne request, minus the amount of vertical motion produced
by .ne. Useful in conjunction with the register .ne.

\n[.u] Equal to 1 in fill mode and 0 in no-fill mode.

Groff Version 1.20 5 January 2009 16

GROFF(7) GROFF(7)

\n[.U] Equal to 1 in safer mode and 0 in unsafe mode.
\n[.v] Current vertical line spacing.
\n[.V] Available vertical resolution in basic units.
\n[.vpt] 1 if vertical position traps are enabled, 0 otherwise.
\n[.w] Width of previous glyph.
\n[.warn] The sum of the number codes of the currently enabled warnings.
\n[.x] The major version number.
\n[.y] The minor version number.
\n[.Y] The revision number of groff.
\n[.z] Name of current diversion.
\n[.zoom] Zoom factor for current font (in multiples of 1/1000th; zero if no magnification).

Writable Registers
The following registers can be read and written by the user. They hav e predefined default values, but
these can be modified for customizing a document.

\n[%] Current page number.
\n[c.] Current input line number.
\n[ct] Character type (set by width function \w).
\n[dl] Maximal width of last completed diversion.
\n[dn] Height of last completed diversion.
\n[dw] Current day of week (1-7).
\n[dy] Current day of month (1-31).
\n[hours] The number of hours past midnight. Initialized at start-up.
\n[hp] Current horizontal position at input line.
\n[llx] Lower left x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[lly] Lower left y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[ln] Output line number.
\n[minutes]

The number of minutes after the hour. Initialized at start-up.
\n[mo] Current month (1-12).
\n[nl] Vertical position of last printed text base-line.
\n[rsb] Like register sb, but takes account of the heights and depths of glyphs.
\n[rst] Like register st, but takes account of the heights and depths of glyphs.
\n[sb] Depth of string below base line (generated by width function \w).
\n[seconds]

The number of seconds after the minute. Initialized at start-up.
\n[skw] Right skip width from the center of the last glyph in the \w argument.
\n[slimit]

If greater than 0, the maximum number of objects on the input stack. If ≤0 there is no
limit, i.e., recursion can continue until virtual memory is exhausted.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph
before a subscript (generated by width function \w).

\n[st] Height of string above base line (generated by width function \w).
\n[systat]

The return value of the system() function executed by the last sy request.
\n[urx] Upper right x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[ury] Upper right y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).
\n[year] The current year (year 2000 compliant).
\n[yr] Current year minus 1900. For Y2K compliance use register year instead.

COMPATIBILITY
The differences of the groff language in comparison to classical troff as defined by [CSTR #54] are
documented in groff_diff(7).

The groff system provides a compatibility mode, see groff(1) on how to inv oke this.

BUGS
Report bugs to the groff bug mailing list Include a complete, self-contained example that will allow the
bug to be reproduced, and say which version of groff you are using.

Groff Version 1.20 5 January 2009 17

GROFF(7) GROFF(7)

AUTHORS
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation,
Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by Bernd Warken it is main-
tained by Werner Lemberg

SEE ALSO
The main source of information for the groff language is the groff info(1) file. Besides the gory
details, it contains many examples.

groff(1)
the usage of the groff program and pointers to the documentation and availability of the groff
system.

groff_diff(7)
the differences of the groff language as compared to classical roff. This is the authoritative
document for the predefined language elements that are specific to groff.

groff_char(7)
the predefined groff special characters (glyphs).

groff_font(5)
the specification of fonts and the DESC file.

roff(7) the history of roff, the common parts shared by all roff systems, and pointers to further docu-
mentation.

[CSTR #54]

Nroff/Troff User’s Manual by Ossanna & Kernighan — the bible for classical troff.

Groff Version 1.20 5 January 2009 18

GROFF_CHAR(7) GROFF_CHAR(7)

GROFF_CHAR

NAME
groff_char − groff glyph names

DESCRIPTION
This manual page lists the standard groff glyph names and the default input mapping, latin1. The
glyphs in this document look different depending on which output device was chosen (with option −T
for the man(1) program or the roff formatter). Glyphs not available for the device that is being used to
print or view this manual page are marked with ‘(N/A)’; the device currently used is ‘ps’.

In the actual version, groff provides only 8-bit characters for direct input and named entities for further
glyphs. On ASCII platforms, input character codes in the range 0 to 127 (decimal) represent the usual
7-bit ASCII characters, while codes between 127 and 255 are interpreted as the corresponding charac-
ters in the latin1 (ISO-8859-1) code set by default. This mapping is contained in the file
latin1.tmac and can be changed by loading a different input encoding. Note that some of the input
characters are reserved by groff, either for internal use or for special input purposes. On EBCDIC plat-
forms, only code page cp1047 is supported (which contains the same characters as latin1; the input
encoding file is called cp1047.tmac). Again, some input characters are reserved for internal and
special purposes.

All roff systems provide the concept of named glyphs. In traditional roff systems, only names of
length 2 were used, while groff also provides support for longer names. It is strongly suggested that
only named glyphs are used for all character representations outside of the printable 7-bit ASCII range.

Some of the predefined groff escape sequences (with names of length 1) also produce single glyphs;
these exist for historical reasons or are printable versions of syntactical characters. They include ‘\\’,
‘\´’, ‘\‘’, ‘\-’, ‘\.’, and ‘\e’; see groff(7).

In groff, all of these different types of characters and glyphs can be tested positively with the ‘.if c’
conditional.

REFERENCE
In this section, the glyphs in groff are specified in tabular form. The meaning of the columns is as fol-
lows.

Output shows how the glyph is printed for the current device; although this can have quite a different
shape on other devices, it always represents the same glyph.

Input name

specifies how the glyph is input either directly by a key on the keyboard, or by a groff escape
sequence.

Input code

applies to glyphs which can be input with a single character, and gives the ISO latin1 decimal
code of that input character. Note that this code is equivalent to the lowest 256 Unicode char-
acters, including 7-bit ASCII in the range 0 to 127.

PostScript name

gives the usual PostScript name of the glyph.

Unicode decomposed

is the glyph name used in composite glyph names.

7-bit Character Codes 32-126
These are the basic glyphs having 7-bit ASCII code values assigned. They are identical to the printable
characters of the character standards ISO-8859-1 (latin1) and Unicode (range Basic Latin). The glyph
names used in composite glyph names are ‘u0020’ up to ‘u007E’.

Note that input characters in the range 0−31 and character 127 are not printable characters. Most of
them are invalid input characters for groff anyway, and the valid ones have special meaning. For
EBCDIC, the printable characters are in the range 66−255.

48−57 Decimal digits 0 to 9 (print as themselves).

65−90 Upper case letters A−Z (print as themselves).

97−122 Lower case letters a−z (print as themselves).

Most of the remaining characters not in the just described ranges print as themselves; the only

Groff Version 1.20 5 January 2009 1

GROFF_CHAR(7) GROFF_CHAR(7)

exceptions are the following characters:

` the ISO latin1 ‘Grave Accent’ (code 96) prints as ‘, a left single quotation mark; the original
character can be obtained with ‘\‘’.

' the ISO latin1 ‘Apostrophe’ (code 39) prints as ’, a right single quotation mark; the original
character can be obtained with ‘\(aq’.

- the ISO latin1 ‘Hyphen, Minus Sign’ (code 45) prints as a hyphen; a minus sign can be
obtained with ‘\-’.

the ISO latin1 ‘Tilde’ (code 126) is reduced in size to be usable as a diacritic; a larger glyph
can be obtained with ‘\(ti’.

ˆ the ISO latin1 ‘Circumflex Accent’ (code 94) is reduced in size to be usable as a diacritic; a
larger glyph can be obtained with ‘\(ha’.

Output Input Input PostScript Unicode Notes

name code name decomposed

! ! 33 exclam u0021
" " 34 quotedbl u0022
35 numbersign u0023
$ $ 36 dollar u0024
% % 37 percent u0025
& & 38 ampersand u0026
’ ' 39 quoteright u0027
((40 parenleft u0028
)) 41 parenright u0029
∗ ∗ 42 asterisk u002A
+ + 43 plus u002B
, , 44 comma u002C
- - 45 hyphen u2010
. . 46 period u002E
/ / 47 slash u002F
: : 58 colon u003A
; ; 59 semicolon u003B
< < 60 less u003C
= = 61 equal u003D
> > 62 greater u003E
? ? 63 question u003F
@ @ 64 at u0040
[[91 bracketleft u005B
\ \ 92 backslash u005C
]] 93 bracketright u005D
ˆ ˆ 94 circumflex u005E circumflex accent
_ _ 95 underscore u005F
‘ ` 96 quoteleft u0060
{ { 123 braceleft u007B
| | 124 bar u007C
} } 125 braceright u007D

126 tilde u007E tilde accent

8-bit Character Codes 160 to 255
They are interpreted as printable characters according to the latin1 (ISO-8859-1) code set, being identi-
cal to the Unicode range Latin-1 Supplement.

Input characters in range 128-159 (on non-EBCDIC hosts) are not printable characters.

160 the ISO latin1 no-break space is mapped to ‘\ ’, the stretchable space character.

173 the soft hyphen control character. groff never uses this character for output (thus it is omitted
in the table below); the input character 173 is mapped onto ‘\%’.

The remaining ranges (161−172, 174−255) are printable characters that print as themselves. Although

Groff Version 1.20 5 January 2009 2

GROFF_CHAR(7) GROFF_CHAR(7)

they can be specified directly with the keyboard on systems with a latin1 code page, it is better to use
their glyph names; see next section.

Output Input Input PostScript Unicode Notes

name code name decomposed

¡ ¡ 161 exclamdown u00A1 inverted exclamation mark
¢ ¢ 162 cent u00A2
£ £ 163 sterling u00A3
¤ ¤ 164 currency u00A4
¥ ¥ 165 yen u00A5
¦ ¦ 166 brokenbar u00A6
§ § 167 section u00A7
¨ ¨ 168 dieresis u00A8
© © 169 copyright u00A9
ª ª 170 ordfeminine u00AA
« « 171 guillemotleft u00AB
¬ ¬ 172 logicalnot u00AC
® ® 174 registered u00AE
¯ ¯ 175 macron u00AF
° ° 176 degree u00B0
± ± 177 plusminus u00B1
² ² 178 twosuperior u00B2
³ ³ 179 threesuperior u00B3
´ ´ 180 acute u00B4 acute accent
µ µ 181 mu u00B5 micro sign
¶ ¶ 182 paragraph u00B6
· · 183 periodcentered u00B7
¸ ¸ 184 cedilla u00B8
¹ ¹ 185 onesuperior u00B9
º º 186 ordmasculine u00BA
» » 187 guillemotright u00BB
¼ ¼ 188 onequarter u00BC
½ ½ 189 onehalf u00BD
¾ ¾ 190 threequarters u00BE
¿ ¿ 191 questiondown u00BF
À À 192 Agrave u0041_0300
Á Á 193 Aacute u0041_0301
Â Â 194 Acircumflex u0041_0302
Ã Ã 195 Atilde u0041_0303
Ä Ä 196 Adieresis u0041_0308
Å Å 197 Aring u0041_030A
Æ Æ 198 AE u00C6
Ç Ç 199 Ccedilla u0043_0327
È È 200 Egrave u0045_0300
É É 201 Eacute u0045_0301
Ê Ê 202 Ecircumflex u0045_0302
Ë Ë 203 Edieresis u0045_0308
Ì Ì 204 Igrave u0049_0300
Í Í 205 Iacute u0049_0301
Î Î 206 Icircumflex u0049_0302
Ï Ï 207 Idieresis u0049_0308
Ð Ð 208 Eth u00D0
Ñ Ñ 209 Ntilde u004E_0303
Ò Ò 210 Ograve u004F_0300
Ó Ó 211 Oacute u004F_0301

Groff Version 1.20 5 January 2009 3

GROFF_CHAR(7) GROFF_CHAR(7)

Output Input Input PostScript Unicode Notes

name code name decomposed

Ô Ô 212 Ocircumflex u004F_0302
Õ Õ 213 Otilde u004F_0303
Ö Ö 214 Odieresis u004F_0308
× × 215 multiply u00D7
Ø Ø 216 Oslash u00D8
Ù Ù 217 Ugrave u0055_0300
Ú Ú 218 Uacute u0055_0301
Û Û 219 Ucircumflex u0055_0302
Ü Ü 220 Udieresis u0055_0308
Ý Ý 221 Yacute u0059_0301
Þ Þ 222 Thorn u00DE
ß ß 223 germandbls u00DF
à à 224 agrave u0061_0300
á á 225 aacute u0061_0301
â â 226 acircumflex u0061_0302
ã ã 227 atilde u0061_0303
ä ä 228 adieresis u0061_0308
å å 229 aring u0061_030A
æ æ 230 ae u00E6
ç ç 231 ccedilla u0063_0327
è è 232 egrave u0065_0300
é é 233 eacute u0065_0301
ê ê 234 ecircumflex u0065_0302
ë ë 235 edieresis u0065_0308
ì ì 236 igrave u0069_0300
í í 237 iacute u0069_0301
î î 238 icircumflex u0069_0302
ï ï 239 idieresis u0069_0308
ð ð 240 eth u00F0
ñ ñ 241 ntilde u006E_0303
ò ò 242 ograve u006F_0300
ó ó 243 oacute u006F_0301
ô ô 244 ocircumflex u006F_0302
õ õ 245 otilde u006F_0303
ö ö 246 odieresis u006F_0308
÷ ÷ 247 divide u00F7
ø ø 248 oslash u00F8
ù ù 249 ugrave u0075_0300
ú ú 250 uacute u0075_0301
û û 251 ucircumflex u0075_0302
ü ü 252 udieresis u0075_0308
ý ý 253 yacute u0079_0301
þ þ 254 thorn u00FE
ÿ ÿ 255 ydieresis u0079_0308

Named Glyphs
Glyph names can be embedded into the document text by using escape sequences. groff(7) describes
how these escape sequences look. Glyph names can consist of quite arbitrary characters from the
ASCII or latin1 code set, not only alphanumeric characters. Here some examples:

\(ch A glyph having the 2-character name ch.

\[char_name]
A glyph having the name char_name (having length 1, 2, 3, . . .). Note that ‘c’ is not the same
as ‘\[c]’ (c a single character): The latter is internally mapped to glyph name ‘\c’. By
default, groff defines a single glyph name starting with a backslash, namely ‘\-’, which can be
either accessed as ‘\−’ or ‘\[-]’.

Groff Version 1.20 5 January 2009 4

GROFF_CHAR(7) GROFF_CHAR(7)

\[base_glyph composite_1 composite_2 . . .]
A composite glyph; see below for a more detailed description.

In groff, each 8-bit input character can also referred to by the construct ‘\[charn]’ where n is the
decimal code of the character, a number between 0 and 255 without leading zeros (those entities are not

glyph names). They are normally mapped onto glyphs using the .trin request. Another special con-
vention is the handling of glyphs with names directly derived from a Unicode code point; this is dis-
cussed below. Moreover, new glyph names can be created by the .char request; see groff(7).

In the following, a plus sign in the ‘Notes’ column indicates that this particular glyph name appears in
the PS version of the original troff documentation, CSTR 54.

Entries marked with ‘∗∗∗’ denote glyphs for mathematical purposes (mainly used for DVI output).
Normally, such glyphs have metrics which make them unusable in normal text.

Output Input PostScript Unicode Notes

name name decomposed

Ð \[-D] Eth u00D0 uppercase eth
ð \[Sd] eth u00F0 lowercase eth
Þ \[TP] Thorn u00DE uppercase thorn
þ \[Tp] thorn u00FE lowercase thorn
ß \[ss] germandbls u00DF German sharp s

Ligatures and Other Latin Glyphs

ff \[ff] ff u0066_0066 ff ligature +
fi \[fi] fi u0066_0069 fi ligature +
fl \[fl] fl u0066_006C fl ligature +
ffi \[Fi] ffi u0066_0066_0069 ffi ligature +
ffl \[Fl] ffl u0066_0066_006C ffl ligature +
Ł \[/L] Lslash u0141 (Polish)
ł \[/l] lslash u0142 (Polish)
Ø \[/O] Oslash u00D8 (Scandinavic)
ø \[/o] oslash u00F8 (Scandinavic)
Æ \[AE] AE u00C6
æ \[ae] ae u00E6
Œ \[OE] OE u0152
œ \[oe] oe u0153
IJ \[IJ] IJ u0132 (Dutch)
ij \[ij] ij u0133 (Dutch)
ı \[.i] dotlessi u0131 (Turkish)
(N/A) \[.j] dotlessj --- j without a dot

Accented Characters

Á \['A] Aacute u0041_0301
Ć \['C] Cacute u0043_0301
É \['E] Eacute u0045_0301
Í \['I] Iacute u0049_0301
Ó \['O] Oacute u004F_0301
Ú \['U] Uacute u0055_0301
Ý \['Y] Yacute u0059_0301
á \['a] aacute u0061_0301
ć \['c] cacute u0063_0301
é \['e] eacute u0065_0301
í \['i] iacute u0069_0301
ó \['o] oacute u006F_0301
ú \['u] uacute u0075_0301
ý \['y] yacute u0079_0301
Ä \[:A] Adieresis u0041_0308 A with umlaut

Groff Version 1.20 5 January 2009 5

GROFF_CHAR(7) GROFF_CHAR(7)

Output Input PostScript Unicode Notes

name name decomposed

Ë \[:E] Edieresis u0045_0308
Ï \[:I] Idieresis u0049_0308
Ö \[:O] Odieresis u004F_0308
Ü \[:U] Udieresis u0055_0308
Ÿ \[:Y] Ydieresis u0059_0308
ä \[:a] adieresis u0061_0308
ë \[:e] edieresis u0065_0308
ï \[:i] idieresis u0069_0308
ö \[:o] odieresis u006F_0308
ü \[:u] udieresis u0075_0308
ÿ \[:y] ydieresis u0079_0308
Â \[ˆA] Acircumflex u0041_0302
Ê \[ˆE] Ecircumflex u0045_0302
Î \[ˆI] Icircumflex u0049_0302
Ô \[ˆO] Ocircumflex u004F_0302
Û \[ˆU] Ucircumflex u0055_0302
â \[ˆa] acircumflex u0061_0302
ê \[ˆe] ecircumflex u0065_0302
î \[ˆi] icircumflex u0069_0302
ô \[ˆo] ocircumflex u006F_0302
û \[ˆu] ucircumflex u0075_0302
À \[`A] Agrave u0041_0300
È \[`E] Egrave u0045_0300
Ì \[`I] Igrave u0049_0300
Ò \[`O] Ograve u004F_0300
Ù \[`U] Ugrave u0055_0300
à \[`a] agrave u0061_0300
è \[`e] egrave u0065_0300
ì \[`i] igrave u0069_0300
ò \[`o] ograve u006F_0300
ù \[`u] ugrave u0075_0300
Ã \[A] Atilde u0041_0303
Ñ \[N] Ntilde u004E_0303
Õ \[O] Otilde u004F_0303
ã \[a] atilde u0061_0303
ñ \[n] ntilde u006E_0303
õ \[o] otilde u006F_0303
Š \[vS] Scaron u0053_030C
š \[vs] scaron u0073_030C
Ž \[vZ] Zcaron u005A_030C
ž \[vz] zcaron u007A_030C
Ç \[,C] Ccedilla u0043_0327
ç \[,c] ccedilla u0063_0327
Å \[oA] Aring u0041_030A
å \[oa] aring u0061_030A

Accents

The composite request is used to map most of the accents to non-spacing glyph names; the values
given in parentheses are the original (spacing) ones.

Output Input PostScript Unicode Notes

name name decomposed

Groff Version 1.20 5 January 2009 6

GROFF_CHAR(7) GROFF_CHAR(7)

˝ \[a"] hungarumlaut u030B (u02DD) (Hungarian)
¯ \[a-] macron u0304 (u00AF)
˙ \[a.] dotaccent u0307 (u02D9)
ˆ \[aˆ] circumflex u0302 (u005E)
´ \[aa] acute u0301 (u00B4) +
` \[ga] grave u0300 (u0060) +
˘ \[ab] breve u0306 (u02D8)
¸ \[ac] cedilla u0327 (u00B8)
¨ \[ad] dieresis u0308 (u00A8) umlaut
ˇ \[ah] caron u030C (u02C7) háček
˚ \[ao] ring u030A (u02DA) circle
˜ \[a] tilde u0303 (u007E)
˛ \[ho] ogonek u0328 (u02DB) hook
^ \[ha] asciicircum u005E (spacing)
~ \[ti] asciitilde u007E (spacing)

Quotes

„ \[Bq] quotedblbase u201E low double comma quote
‚ \[bq] quotesinglbase u201A low single comma quote
“ \[lq] quotedblleft u201C
” \[rq] quotedblright u201D
‘ \[oq] quoteleft u2018 single open quote
’ \[cq] quoteright u2019 single closing quote
' \[aq] quotesingle u0027 apostrophe quote (ASCII 39)
" \[dq] quotedbl u0022 double quote (ASCII 34)
« \[Fo] guillemotleft u00AB
» \[Fc] guillemotright u00BB
‹ \[fo] guilsinglleft u2039
› \[fc] guilsinglright u203A

Punctuation

¡ \[r!] exclamdown u00A1
¿ \[r?] questiondown u00BF
— \[em] emdash u2014 +
– \[en] endash u2013
- \[hy] hyphen u2010 +

Brackets

The extensible bracket pieces are font-invariant glyphs. In classical troff only one glyph was available
to vertically extend brackets, braces, and parentheses: ‘bv’. We map it rather arbitrarily to u23AA.

Note that not all devices contain extensible bracket pieces which can be piled up with ‘\b’ due to the
restrictions of the escape’s piling algorithm. A general solution to build brackets out of pieces is the
following macro:

.\" Make a pile centered vertically 0.5em

.\" above the baseline.

.\" The first argument is placed at the top.

.\" The pile is returned in string ‘pile’

.eo

.de pile-make

. nr pile-wd 0

. nr pile-ht 0

. ds pile-args

.

. nr pile-# \n[.$]

. while \n[pile-#] \{\

. nr pile-wd (\n[pile-wd] >? \w’\$[\n[pile-#]]’)

. nr pile-ht +(\n[rst] - \n[rsb])

. as pile-args \v’\n[rsb]u’\"

Groff Version 1.20 5 January 2009 7

GROFF_CHAR(7) GROFF_CHAR(7)

. as pile-args \Z’\$[\n[pile-#]]’\"

. as pile-args \v’-\n[rst]u’\"

. nr pile-# -1

. \}

.

. ds pile \v’(-0.5m + (\n[pile-ht]u / 2u))’\"

. as pile \∗[pile-args]\"

. as pile \v’((\n[pile-ht]u / 2u) + 0.5m)’\"

. as pile \h’\n[pile-wd]u’\"

..

.ec

Another complication is the fact that some glyphs which represent bracket pieces in original troff can
be used for other mathematical symbols also, for example ‘lf’ and ‘rf’ which provide the ‘floor’ opera-
tor. Other devices (most notably for DVI output) don’t unify such glyphs. For this reason, the four
glyphs ‘lf’, ‘rf’, ‘lc’, and ‘rc’ are not unified with similarly looking bracket pieces. In groff, only
glyphs with long names are guaranteed to pile up correctly for all devices (provided those glyphs exist).

Output Input PostScript Unicode Notes

name name decomposed

[\[lB] bracketleft u005B
] \[rB] bracketright u005D
{ \[lC] braceleft u007B
} \[rC] braceright u007D
〈 \[la] angleleft u27E8 left angle bracket
〉 \[ra] angleright u27E9 right angle bracket
 \[bv] braceex u23AA vertical extension ∗∗∗ +
 \[braceex] braceex u23AA
 \[bracketlefttp] bracketlefttp u23A1
 \[bracketleftbt] bracketleftbt u23A3
 \[bracketleftex] bracketleftex u23A2
 \[bracketrighttp] bracketrighttp u23A4
 \[bracketrightbt] bracketrightbt u23A6
 \[bracketrightex] bracketrightex u23A5
 \[lt] bracelefttp u23A7 +
 \[bracelefttp] bracelefttp u23A7
 \[lk] braceleftmid u23A8 +
 \[braceleftmid] braceleftmid u23A8
 \[lb] braceleftbt u23A9 +
 \[braceleftbt] braceleftbt u23A9
 \[braceleftex] braceleftex u23AA
 \[rt] bracerighttp u23AB +
 \[bracerighttp] bracerighttp u23AB
 \[rk] bracerightmid u23AC +
 \[bracerightmid] bracerightmid u23AC
 \[rb] bracerightbt u23AD +
 \[bracerightbt] bracerightbt u23AD
 \[bracerightex] bracerightex u23AA
 \[parenlefttp] parenlefttp u239B
 \[parenleftbt] parenleftbt u239D
 \[parenleftex] parenleftex u239C
 \[parenrighttp] parenrighttp u239E
 \[parenrightbt] parenrightbt u23A0
 \[parenrightex] parenrightex u239F

Arrows

Groff Version 1.20 5 January 2009 8

GROFF_CHAR(7) GROFF_CHAR(7)

← \[<-] arrowleft u2190 +
→ \[->] arrowright u2192 +
↔ \[<>] arrowboth u2194 (horizontal)
↓ \[da] arrowdown u2193 +
↑ \[ua] arrowup u2191 +
↑↓ \[va] arrowupdn u2195
⇐ \[lA] arrowdblleft u21D0
⇒ \[rA] arrowdblright u21D2
⇔ \[hA] arrowdblboth u21D4 (horizontal)
⇓ \[dA] arrowdbldown u21D3
⇑ \[uA] arrowdblup u21D1
(N/A) \[vA] uni21D5 u21D5 vertical double-headed double

arrow
 \[an] arrowhorizex u23AF horizontal arrow extension

Lines

The font-invariant glyphs ‘br’, ‘ul’, and ‘rn’ form corners; they can be used to build boxes. Note that
both the PostScript and the Unicode-derived names of these three glyphs are just rough approxima-
tions.

‘rn’ also serves in classical troff as the horizontal extension of the square root sign.

‘ru’ is a font-invariant glyph, namely a rule of length 0.5m.

Output Input PostScript Unicode Notes

name name decomposed

| \[ba] bar u007C
\[br] SF110000 u2502 box rule +
\[ul] underscore u005F +
\[rn] overline u203E use ‘\[radicalex]’ for continuation of

square root +
\[ru] --- --- baseline rule +

¦ \[bb] brokenbar u00A6
/ \[sl] slash u002F +
\ \[rs] backslash u005C reverse solidus

Te xt markers

\[ci] circle u25CB +
• \[bu] bullet u2022 +
‡ \[dd] daggerdbl u2021 double dagger sign +
† \[dg] dagger u2020 +
◊ \[lz] lozenge u25CA

\[sq] uni25A1 u25A1 white square +
¶ \[ps] paragraph u00B6
§ \[sc] section u00A7 +

+ \[lh] uni261C u261C hand pointing left +
+ \[rh] a14 u261E hand pointing right +
@ \[at] at u0040
\[sh] numbersign u0023
↵ \[CR] carriagereturn u21B5
3 \[OK] a19 u2713 check mark, tick

Legal Symbols

© \[co] copyright u00A9 +
® \[rg] registered u00AE +
™ \[tm] trademark u2122
(N/A) \[bs] --- --- AT&T Bell Labs logo (not used in groff) +

Currency symbols

Groff Version 1.20 5 January 2009 9

GROFF_CHAR(7) GROFF_CHAR(7)

$ \[Do] dollar u0024
¢ \[ct] cent u00A2 +
€ \[eu] --- u20AC official Euro symbol
€ \[Eu] Euro u20AC font-specific Euro glyph variant
¥ \[Ye] yen u00A5
£ \[Po] sterling u00A3 British currency sign
¤ \[Cs] currency u00A4 Scandinavian currency sign
ƒ \[Fn] florin u0192 Dutch currency sign

Units

° \[de] degree u00B0 +
‰ \[%0] perthousand u2030 per thousand, per mille sign
′ \[fm] minute u2032 footmark, prime +
″ \[sd] second u2033
µ \[mc] mu u00B5 micro sign
ª \[Of] ordfeminine u00AA
º \[Om] ordmasculine u00BA

Logical Symbols

∧ \[AN] logicaland u2227
∨ \[OR] logicalor u2228
¬ \[no] logicalnot u00AC +
¬ \[tno] logicalnot u00AC text variant of ‘no’
∃ \[te] existential u2203 there exists, existential quantifier
∀ \[fa] universal u2200 for all, universal quantifier
∋ \[st] suchthat u220B
∴ \[3d] therefore u2234
∴ \[tf] therefore u2234

\[or] bar u007C bitwise OR operator (as used in C) +

Mathematical Symbols

½ \[12] onehalf u00BD +
¼ \[14] onequarter u00BC +
¾ \[34] threequarters u00BE +
1⁄8 \[18] oneeighth u215B
3⁄8 \[38] threeeighths u215C
5⁄8 \[58] fiveeighths u215D
7⁄8 \[78] seveneighths u215E
¹ \[S1] onesuperior u00B9
² \[S2] twosuperior u00B2
³ \[S3] threesuperior u00B3
+ \[pl] plus u002B plus sign in special font +
− \[mi] minus u2212 minus sign in special font +
(N/A) \[-+] uni2213 u2213
± \[+-] plusminus u00B1 +
± \[t+-] plusminus u00B1 text variant of ‘+−’
· \[pc] periodcentered u00B7
⋅ \[md] dotmath u22C5 multiplication dot
× \[mu] multiply u00D7 +
× \[tmu] multiply u00D7 text variant of ‘mu’
⊗ \[c∗] circlemultiply u2297 multiply sign in a circle
⊕ \[c+] circleplus u2295 plus sign in a circle
÷ \[di] divide u00F7 division sign +
÷ \[tdi] divide u00F7 text variant of ‘di’
⁄ \[f/] fraction u2044 bar for fractions
∗ \[∗∗] asteriskmath u2217 +
≤ \[<=] lessequal u2264 +

Groff Version 1.20 5 January 2009 10

GROFF_CHAR(7) GROFF_CHAR(7)

Output Input PostScript Unicode Notes

name name decomposed

≥ \[>=] greaterequal u2265 +
<< \[<<] uni226A u226A much less
>> \[>>] uni226B u226B much greater
= \[eq] equal u003D equals sign in special font +
≠ \[!=] notequal u003D_0338 +
≡ \[==] equivalence u2261 +
/≡ \[ne] uni2262 u2261_0338
≅ \[=] congruent u2245 approx. equal
−∼ \[|=] uni2243 u2243 asymptot. equal to +
∼ \[ap] similar u223C +
≈ \[] approxequal u2248 almost equal to
≈ \[=] approxequal u2248
∝ \[pt] proportional u221D +
∅ \[es] emptyset u2205 +
∈ \[mo] element u2208 +
∉ \[nm] notelement u2208_0338
⊂ \[sb] propersubset u2282 +
⊄ \[nb] notsubset u2282_0338
⊃ \[sp] propersuperset u2283 +
/⊃ \[nc] uni2285 u2283_0338 not superset
⊆ \[ib] reflexsubset u2286 +
⊇ \[ip] reflexsuperset u2287 +
∩ \[ca] intersection u2229 intersection, cap +
∪ \[cu] union u222A union, cup +
∠ \[/_] angle u2220
⊥ \[pp] perpendicular u22A5
∫ \[is] integral u222B +
∫ \[integral] integral u222B ∗∗∗
∑ \[sum] summation u2211 ∗∗∗
∏ \[product] product u220F ∗∗∗
(N/A) \[coproduct] uni2210 u2210 ∗∗∗
∇ \[gr] gradient u2207 +
√ \[sr] radical u221A square root +
√ \[sqrt] radical u221A ∗∗∗

 \[radicalex] radicalex --- continuation of square root
 \[sqrtex] radicalex --- ∗∗∗

 \[lc] uni2308 u2308 left ceiling +
 \[rc] uni2309 u2309 right ceiling +
 \[lf] uni230A u230A left floor +
 \[rf] uni230B u230B right floor +
∞ \[if] infinity u221E +
ℵ \[Ah] aleph u2135
ℑ \[Im] Ifraktur u2111 Gothic I, imaginary
ℜ \[Re] Rfraktur u211C Gothic R, real
℘ \[wp] weierstrass u2118 Weierstrass p
∂ \[pd] partialdiff u2202 partial differentiation sign +
h \[-h] uni210F u210F Planck constant over two pi
h \[hbar] uni210F u210F

Greek glyphs

These glyphs are intended for technical use, not for real Greek; normally, the uppercase letters have
upright shape, and the lowercase ones are slanted. There is a problem with the mapping of letter phi to
Unicode. Prior to Unicode version 3.0, the difference between U+03C6, GREEK SMALL LETTER
PHI, and U+03D5, GREEK PHI SYMBOL, was not clearly described; only the glyph shapes in the
Unicode book could be used as a reference. Starting with Unicode 3.0, the reference glyphs have been
exchanged and described verbally also: In mathematical context, U+03D5 is the stroked variant and

Groff Version 1.20 5 January 2009 11

GROFF_CHAR(7) GROFF_CHAR(7)

U+03C6 the curly glyph. Unfortunately, most font vendors didn’t update their fonts to this (incompati-
ble) change in Unicode. At the time of this writing (January 2006), it is not clear yet whether the
Adobe Glyph Names ‘phi’ and ‘phi1’ also change its meaning if used for mathematics, thus compati-
bility problems are likely to happen – being conservative, groff currently assumes that ‘phi’ in a Post-
Script symbol font is the stroked version.

In groff, symbol ‘\[∗f]’ always denotes the stroked version of phi, and ‘\[+f]’ the curly variant.

Α \[∗A] Alpha u0391 +
Β \[∗B] Beta u0392 +
Γ \[∗G] Gamma u0393 +
∆ \[∗D] Delta u0394 +
Ε \[∗E] Epsilon u0395 +
Ζ \[∗Z] Zeta u0396 +
Η \[∗Y] Eta u0397 +
Θ \[∗H] Theta u0398 +
Ι \[∗I] Iota u0399 +
Κ \[∗K] Kappa u039A +
Λ \[∗L] Lambda u039B +
Μ \[∗M] Mu u039C +
Ν \[∗N] Nu u039D +
Ξ \[∗C] Xi u039E +
Ο \[∗O] Omicron u039F +
Π \[∗P] Pi u03A0 +
Ρ \[∗R] Rho u03A1 +
Σ \[∗S] Sigma u03A3 +
Τ \[∗T] Tau u03A4 +
ϒ \[∗U] Upsilon u03A5 +
Φ \[∗F] Phi u03A6 +
Χ \[∗X] Chi u03A7 +
Ψ \[∗Q] Psi u03A8 +
Ω \[∗W] Omega u03A9 +
α \[∗a] alpha u03B1 +
β \[∗b] beta u03B2 +
γ \[∗g] gamma u03B3 +
δ \[∗d] delta u03B4 +
ε \[∗e] epsilon u03B5 +
ζ \[∗z] zeta u03B6 +
η \[∗y] eta u03B7 +
θ \[∗h] theta u03B8 +
ι \[∗i] iota u03B9 +
κ \[∗k] kappa u03BA +
λ \[∗l] lambda u03BB +
µ \[∗m] mu u03BC +
ν \[∗n] nu u03BD +
ξ \[∗c] xi u03BE +
ο \[∗o] omicron u03BF +
π \[∗p] pi u03C0 +
ρ \[∗r] rho u03C1 +
" \[ts] sigma1 u03C2 terminal sigma +
σ \[∗s] sigma u03C3 +
τ \[∗t] tau u03C4 +
υ \[∗u] upsilon u03C5 +
φ \[∗f] phi u03D5 (stroked glyph)+
χ \[∗x] chi u03C7 +
ψ \[∗q] psi u03C8 +
ω \[∗w] omega u03C9 +

Groff Version 1.20 5 January 2009 12

GROFF_CHAR(7) GROFF_CHAR(7)

Output Input PostScript Unicode Notes

name name decomposed

ϑ \[+h] theta1 u03D1 variant theta
ϕ \[+f] phi1 u03C6 variant phi (curly shape)
ϖ \[+p] omega1 u03D6 variant pi, looking like omega
(N/A) \[+e] uni03F5 u03F5 variant epsilon

Card symbols

♣ \[CL] club u2663 black club suit
♠ \[SP] spade u2660 black spade suit
♥ \[HE] heart u2665 black heart suit
(N/A) \[u2662] uni2662 u2662 white heart suit
♦ \[DI] diamond u2666 black diamond suit
(N/A) \[u2661] uni2661 u2661 white diamond suit

AUTHOR
Copyright © 1989-2000, 2001, 2002, 2003, 2004, 2006, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by James Clark with additions
by Werner Lemberg and Bernd Warken

SEE ALSO
groff(1)

the GNU roff formatter

groff(7)
a short reference of the groff formatting language

An extension to the troff character set for Europe, E.G. Keizer, K.J. Simonsen, J. Akkerhuis; EUUG
Newsletter, Volume 9, No. 2, Summer 1989

The Unicode Standard

Groff Version 1.20 5 January 2009 13

GROFF_DIFF(7) GROFF_DIFF(7)

GROFF_DIFF

NAME
groff_diff − differences between GNU troff and classical troff

DESCRIPTION
This manual page describes the language differences between groff , the GNU roff text processing sys-
tem, and the classical roff formatter of the freely available Unix 7 of the 1970s, documented in the Tr off

User’s Manual by Ossanna and Kernighan. This inludes the roff language as well as the intermediate
output format (troff output).

The section SEE ALSO gives pointers to both the classical roff and the modern groff documentation.

GROFF LANGUAGE
In this section, all additional features of groff compared to the classical Unix 7 troff are described in
detail.

Long names
The names of number registers, fonts, strings/macros/diversions, special characters (glyphs), and colors
can be of any length. In escape sequences, additionally to the classical ‘(xx’ construction for a two-
character glyph name, you can use ‘[xxx]’ for a name of arbitrary length.

\[xxx] Print the special character (glyph) called xxx.

\[comp1 comp2 . . .]
Print composite glyph consisting of multiple components. Example: ‘\[A ho]’ is capital letter
A with ogonek which finally maps to glyph name ‘u0041_0328’. See the groff info file for
details how a glyph name for a composite glyph is constructed, and groff_char(7) for a list of
glyph name components used in composite glyph names.

\f[xxx] Set font xxx. Additionally, \f[] is a new syntax form equal to \fP, i.e., to return to the previous
font.

\∗[xxx arg1 arg2 . . .]
Interpolate string xxx, taking arg1, arg2, . . . as arguments.

\n[xxx] Interpolate number register xxx.

Fractional point sizes
A scaled point is equal to 1/sizescale points, where sizescale is specified in the DESC file (1 by
default). There is a new scale indicator z that has the effect of multiplying by sizescale. Requests and
escape sequences in troff interpret arguments that represent a point size as being in units of scaled
points, but they evaluate each such argument using a default scale indicator of z. Arguments treated in
this way are the argument to the ps request, the third argument to the cs request, the second and fourth
arguments to the tkf request, the argument to the \H escape sequence, and those variants of the \s
escape sequence that take a numeric expression as their argument.

For example, suppose sizescale is 1000; then a scaled point is equivalent to a millipoint; the call
.ps 10.25 is equivalent to .ps 10.25z and so sets the point size to 10250 scaled points, which is equal to
10.25 points.

The number register \n[.s] returns the point size in points as decimal fraction. There is also a new num-
ber register \n[.ps] that returns the point size in scaled points.

It would make no sense to use the z scale indicator in a numeric expression whose default scale indica-
tor was neither u nor z, and so troff disallows this. Similarly it would make no sense to use a scaling
indicator other than z or u in a numeric expression whose default scale indicator was z, and so troff
disallows this as well.

There is also new scale indicator s which multiplies by the number of units in a scaled point. So, for
example, \n[.ps]s is equal to 1m. Be sure not to confuse the s and z scale indicators.

Numeric expressions
Spaces are permitted in a number expression within parentheses.

M indicates a scale of 100ths of an em. f indicates a scale of 65536 units, providing fractions for color
definitions with the defcolor request. For example, 0.5f = 32768u.
e1>?e2 The maximum of e1 and e2.

Groff Version 1.20 5 January 2009 1

GROFF_DIFF(7) GROFF_DIFF(7)

e1<?e2 The minimum of e1 and e2.

(c;e) Evaluate e using c as the default scaling indicator. If c is missing, ignore scaling indicators in
the evaluation of e.

New escape sequences
\A’anything’

This expands to 1 or 0, depending on whether anything is or is not acceptable as the name of a
string, macro, diversion, number register, environment, font, or color. It returns 0 if anything

is empty. This is useful if you want to look up user input in some sort of associative table.

\B’anything’
This expands to 1 or 0, depending on whether anything is or is not a valid numeric expression.
It returns 0 if anything is empty.

\C’xxx’
Typeset glyph named xxx. Normally it is more convenient to use \[xxx]. But \C has the
advantage that it is compatible with recent versions of UNIX and is available in compatibility
mode.

\E This is equivalent to an escape character, but it is not interpreted in copy mode. For example,
strings to start and end superscripting could be defined like this

.ds { \v’−.3m’\s’\En[.s]∗6u/10u’ .ds } \s0\v’.3m’

The use of \E ensures that these definitions work even if \∗{ gets interpreted in copy mode (for
example, by being used in a macro argument).

\F f

\F(fm

\F[fam]
Change font family. This is the same as the fam request. \F[] switches back to the previous
color (note that \FP won’t work; it selects font family ‘P’ instead).

\mx

\m(xx

\m[xxx]
Set drawing color. \m[] switches back to the previous color.

\Mx

\M(xx

\M[xxx]
Set background color for filled objects drawn with the \D’. . .’ commands. \M[] switches back
to the previous color.

\N’n’ Typeset the glyph with index n in the current font. n can be any integer. Most devices only
have glyphs with indices between 0 and 255. If the current font does not contain a glyph with
that code, special fonts are not searched. The \N escape sequence can be conveniently used in
conjunction with the char request, for example

.char \[phone] \f(ZD\N’37’

The index of each glyph is given in the fourth column in the font description file after the
charset command. It is possible to include unnamed glyphs in the font description file by
using a name of −−−; the \N escape sequence is the only way to use these.

\On

\O[n] Suppress troff output. The escapes \O2, \O3, \O4, and \O5 are intended for internal use by
grohtml.

\O0 Disable any ditroff glyphs from being emitted to the device driver, provided that the
escape occurs at the outer level (see \O3 and \O4).

\O1 Enable output of glyphs, provided that the escape occurs at the outer level.

\O0 and \O1 also reset the registers \n[opminx], \n[opminy], \n[opmaxx], and
\n[opmaxy] to −1. These four registers mark the top left and bottom right hand
corners of a box which encompasses all written glyphs.

Groff Version 1.20 5 January 2009 2

GROFF_DIFF(7) GROFF_DIFF(7)

\O2 Provided that the escape occurs at the outer level, enable output of glyphs and also
write out to stderr the page number and four registers encompassing the glyphs previ-
ously written since the last call to \O.

\O3 Begin a nesting level. At start-up, troff is at outer level. This is really an internal
mechanism for grohtml while producing images. They are generated by running the
troff source through troff to the postscript device and ghostscript to produce images
in PNG format. The \O3 escape starts a new page if the device is not html (to reduce
the possibility of images crossing a page boundary).

\O4 End a nesting level.

\O5[Pfilename]
This escape is grohtml specific. Provided that this escape occurs at the outer nesting
level, write filename to stderr. The position of the image, P, must be specified and
must be one of l, r, c, or i (left, right, centered, inline). filename is associated with
the production of the next inline image.

\R’name ±n’
This has the same effect as

.nr name ±n

\s(nn

\s±(nn Set the point size to nn points; nn must be exactly two digits.

\s[±n]
\s±[n]
\s’±n’
\s±’n’ Set the point size to n scaled points; n is a numeric expression with a default scale indicator

of z.

\Vx

\V(xx

\V[xxx]
Interpolate the contents of the environment variable xxx, as returned by getenv(3). \V is inter-
preted in copy mode.

\Yx

\Y(xx

\Y[xxx]
This is approximately equivalent to \X’\∗[xxx]’. Howev er the contents of the string or macro
xxx are not interpreted; also it is permitted for xxx to have been defined as a macro and thus
contain newlines (it is not permitted for the argument to \X to contain newlines). The inclu-
sion of newlines requires an extension to the UNIX troff output format, and confuses drivers
that do not know about this extension.

\Z’anything’
Print anything and then restore the horizontal and vertical position; anything may not contain
tabs or leaders.

\$0 The name by which the current macro was invoked. The als request can make a macro have
more than one name.

\$∗ In a macro or string, the concatenation of all the arguments separated by spaces.

\$@ In a macro or string, the concatenation of all the arguments with each surrounded by double
quotes, and separated by spaces.

\$ˆ In a macro, the representation of all parameters as if they were an argument to the ds request.

\$(nn

\$[nnn] In a macro or string, this gives the nn-th or nnn-th argument. Macros and strings can have an
unlimited number of arguments.

\?anything\?
When used in a diversion, this transparently embeds anything in the diversion. anything is

Groff Version 1.20 5 January 2009 3

GROFF_DIFF(7) GROFF_DIFF(7)

read in copy mode. When the diversion is reread, anything is interpreted. anything may not
contain newlines; use \! if you want to embed newlines in a diversion. The escape sequence \?
is also recognized in copy mode and turned into a single internal code; it is this code that ter-
minates anything. Thus

.nr x 1 .nf .di d \?\\?\\\\?\\\\\\\\nx\\\\?\\?\? .di .nr x 2 .di e .d .di .nr x 3 .di f .e .di .nr x
4 .f

prints 4.

\/ This increases the width of the preceding glyph so that the spacing between that glyph and the
following glyph is correct if the following glyph is a roman glyph. For example, if an italic f
is immediately followed by a roman right parenthesis, then in many fonts the top right portion
of the f overlaps the top left of the right parenthesis producing f), which is ugly. Inserting \/
produces f) and avoids this problem. It is a good idea to use this escape sequence whenever
an italic glyph is immediately followed by a roman glyph without any intervening space.

\, This modifies the spacing of the following glyph so that the spacing between that glyph and
the preceding glyph is correct if the preceding glyph is a roman glyph. For example, inserting
\, between the parenthesis and the f changes (f to (f. It is a good idea to use this escape
sequence whenever a roman glyph is immediately followed by an italic glyph without any
intervening space.

\) Like \& except that it behaves like a character declared with the cflags request to be transpar-
ent for the purposes of end-of-sentence recognition.

\ This produces an unbreakable space that stretches like a normal inter-word space when a line
is adjusted.

\: This causes the insertion of a zero-width break point. It is equal to \% within a word but with-
out insertion of a soft hyphen glyph.

\# Everything up to and including the next newline is ignored. This is interpreted in copy mode.
It is like \" except that \" does not ignore the terminating newline.

New requests
.aln xx yy

Create an alias xx for number register object named yy. The new name and the old name are
exactly equivalent. If yy is undefined, a warning of type reg is generated, and the request is
ignored.

.als xx yy

Create an alias xx for request, string, macro, or diversion object named yy. The new name and
the old name are exactly equivalent (it is similar to a hard rather than a soft link). If yy is
undefined, a warning of type mac is generated, and the request is ignored. The de, am, di, da,
ds, and as requests only create a new object if the name of the macro, diversion or string is
currently undefined or if it is defined to be a request; normally they modify the value of an
existing object.

.am1 xx yy

Similar to .am, but compatibility mode is switched off during execution. To be more precise,
a ‘compatibility save’ token is inserted at the beginning of the macro addition, and a ‘compati-
bility restore’ token at the end. As a consequence, the requests am, am1, de, and de1 can be
intermixed freely since the compatibility save/restore tokens only affect the macro parts
defined by .am1 and .ds1.

.ami xx yy

Append to macro indirectly. See the dei request below for more information.

.ami1 xx yy

Same as the ami request but compatibility mode is switched off during execution.

.as1 xx yy

Similar to .as, but compatibility mode is switched off during expansion. To be more precise, a
‘compatibility save’ token is inserted at the beginning of the string, and a ‘compatibility
restore’ token at the end. As a consequence, the requests as, as1, ds, and ds1 can be
intermixed freely since the compatibility save/restore tokens only affect the (sub)strings

Groff Version 1.20 5 January 2009 4

GROFF_DIFF(7) GROFF_DIFF(7)

defined by as1 and ds1.

.asciify xx

This request ‘unformats’ the diversion xx in such a way that ASCII and space characters (and
some escape sequences) that were formatted and diverted into xx are treated like ordinary
input characters when xx is reread. Useful for diversions in conjunction with the writem
request. It can be also used for gross hacks; for example, this

.tr @. .di x @nr n 1 .br .di .tr @@ .asciify x .x

sets register n to 1. Note that glyph information (font, font size, etc.) is not preserved; use
.unformat instead.

.backtrace
Print a backtrace of the input stack on stderr.

.blm xx

Set the blank line macro to xx. If there is a blank line macro, it is invoked when a blank line is
encountered instead of the usual troff behaviour.

.box xx

.boxa xx

These requests are similar to the di and da requests with the exception that a partially filled
line does not become part of the diversion (i.e., the diversion always starts with a new line) but
is restored after ending the diversion, discarding the partially filled line which possibly comes
from the diversion.

.break Break out of a while loop. See also the while and continue requests. Be sure not to confuse
this with the br request.

.brp This is the same as \p.

.cflags n c1 c2 . . .

Characters c1, c2, . . . hav e properties determined by n, which is ORed from the following:

1 The character ends sentences (initially characters .?! have this property).

2 Lines can be broken before the character (initially no characters have this property); a
line is not broken at a character with this property unless the characters on each side
both have non-zero hyphenation codes. This can be overridden with value 64.

4 Lines can be broken after the character (initially characters −\[hy]\[em] have this
property); a line is not broken at a character with this property unless the characters
on each side both have non-zero hyphenation codes. This can be overridden with
value 64.

8 The glyph associated with this character overlaps horizontally (initially characters
\[ul]\[rn]\[ru]\[radicalex]\[sqrtex] have this property).

16 The glyph associated with this character overlaps vertically (initially glyph \[br] has
this property).

32 An end-of-sentence character followed by any number of characters with this prop-
erty is treated as the end of a sentence if followed by a newline or two spaces; in
other words the character is transparent for the purposes of end-of-sentence recogni-
tion; this is the same as having a zero space factor in TEX (initially characters
"’)]∗\[dg]\[rq] have this property).

64 Ignore hyphenation code values of the surrounding characters. Use this in combina-
tion with values 2 and 4 (initially no characters have this property).

.char c string

[This request can both define characters and glyphs.]

Define entity c to be string. To be more precise, define (or even override) a groff entity which
can be accessed with name c on the input side, and which uses string on the output side.
Every time glyph c needs to be printed, string is processed in a temporary environment and the
result is wrapped up into a single object. Compatibility mode is turned off and the escape
character is set to \ while string is being processed. Any emboldening, constant spacing or

Groff Version 1.20 5 January 2009 5

GROFF_DIFF(7) GROFF_DIFF(7)

track kerning is applied to this object rather than to individual glyphs in string.

A groff object defined by this request can be used just like a normal glyph provided by the
output device. In particular other characters can be translated to it with the tr request; it can
be made the leader glyph by the lc request; repeated patterns can be drawn with the glyph
using the \l and \L escape sequences; words containing c can be hyphenated correctly, if the
hcode request is used to give the object a hyphenation code.

There is a special anti-recursion feature: Use of glyph within the glyph’s definition is handled
like normal glyphs not defined with char.

A glyph definition can be removed with the rchar request.

.chop xx

Chop the last element off macro, string, or diversion xx. This is useful for removing the new-
line from the end of diversions that are to be interpolated as strings.

.close stream

Close the stream named stream; stream will no longer be an acceptable argument to the write
request. See the open request.

.composite glyph1 glyph2

Map glyph name glyph1 to glyph name glyph2 if it is used in \[. . .] with more than one com-
ponent.

.continue
Finish the current iteration of a while loop. See also the while and break requests.

.color n

If n is non-zero or missing, enable colors (this is the default), otherwise disable them.

.cp n If n is non-zero or missing, enable compatibility mode, otherwise disable it. In compatibility
mode, long names are not recognized, and the incompatibilities caused by long names do not
arise.

.defcolor xxx scheme color_components

Define color xxx. scheme can be one of the following values: rgb (three components), cmy
(three components), cmyk (four components), and gray or grey (one component). Color
components can be given either as a hexadecimal string or as positive decimal integers in the
range 0-65535. A hexadecimal string contains all color components concatenated; it must
start with either # or ##. The former specifies hex values in the range 0-255 (which are inter-
nally multiplied by 257), the latter in the range 0-65535. Examples: #FFC0CB (pink),
##ffff0000ffff (magenta). A new scaling indicator f has been introduced which multiplies its
value by 65536; this makes it convenient to specify color components as fractions in the range
0 to 1. Example:

.defcolor darkgreen rgb 0.1f 0.5f 0.2f

Note that f is the default scaling indicator for the defcolor request, thus the above statement is
equivalent to

.defcolor darkgreen rgb 0.1 0.5 0.2

The color named default (which is device-specific) can’t be redefined. It is possible that the
default color for \M and \m is not the same.

.de1 xx yy

Similar to .de, but compatibility mode is switched off during execution. On entry, the current
compatibility mode is saved and restored at exit.

.dei xx yy

Define macro indirectly. The following example

.ds xx aa .ds yy bb .dei xx yy

is equivalent to

.de aa bb

Groff Version 1.20 5 January 2009 6

GROFF_DIFF(7) GROFF_DIFF(7)

.dei1 xx yy

Similar to the dei request but compatibility mode is switched off during execution.

.device anything

This is (almost) the same as the \X escape. anything is read in copy mode; a leading " is
stripped.

.devicem xx

This is the same as the \Y escape (to embed the contents of a macro into the intermediate out-
put preceded with ‘x X’).

.do xxx Interpret .xxx with compatibility mode disabled. For example,

.do fam T

would have the same effect as

.fam T

except that it would work even if compatibility mode had been enabled. Note that the previ-
ous compatibility mode is restored before any files sourced by xxx are interpreted.

.ds1 xx yy

Similar to .ds, but compatibility mode is switched off during expansion. To be more precise, a
‘compatibility save’ token is inserted at the beginning of the string, and a ‘compatibility
restore’ token at the end.

.ecs Save current escape character.

.ecr Restore escape character saved with ecs. Without a previous call to ecs, ‘\’ will be the new
escape character.

.evc xx Copy the contents of environment xx to the current environment. No pushing or popping of
environments is done.

.fam xx

Set the current font family to xx. The current font family is part of the current environment. If
xx is missing, switch back to previous font family. The value at start-up is ‘T’. See the
description of the sty request for more information on font families.

.fchar c string

Define fallback character (or glyph) c to be string. The syntax of this request is the same as
the char request; the only difference is that a glyph defined with char hides the glyph with the
same name in the current font, whereas a glyph defined with fchar is checked only if the par-
ticular glyph isn’t found in the current font. This test happens before checking special fonts.

.fcolor c

Set the fill color to c. If c is missing, switch to the previous fill color.

.fschar f c string

Define fallback character (or glyph) c for font f to be string. The syntax of this request is the
same as the char request (with an additional argument to specify the font); a glyph defined
with fschar is searched after the list of fonts declared with the fspecial request but before the
list of fonts declared with .special.

.fspecial f s1 s2 . . .

When the current font is f , fonts s1, s2, . . . are special, that is, they are searched for glyphs not
in the current font. Any fonts specified in the special request are searched after fonts specified
in the fspecial request. Without argument, reset the list of global special fonts to be empty.

.ftr f g Translate font f to g. Whenever a font named f is referred to in an \f escape sequence, in the F
and S conditional operators, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or sty requests,
font g is used. If g is missing, or equal to f then font f is not translated.

.fzoom f zoom

Set zoom factor zoom for font f . zoom must a non-negative integer multiple of 1/1000th. If it
is missing or is equal to zero, it means the same as 1000, namely no magnification. f must be
a real font name, not a style.

Groff Version 1.20 5 January 2009 7

GROFF_DIFF(7) GROFF_DIFF(7)

.gcolor c

Set the glyph color to c. If c is missing, switch to the previous glyph color.

.hcode c1 code1 c2 code2 . . .

Set the hyphenation code of character c1 to code1 and that of c2 to code2. A hyphenation
code must be a single input character (not a special character) other than a digit or a space.
Initially each lower-case letter a-z has a hyphenation code, which is itself, and each upper-case
letter A-Z has a hyphenation code which is the lower-case version of itself. See also the hpf
request.

.hla lang

Set the current hyphenation language to lang. Hyphenation exceptions specified with the hw
request and hyphenation patterns specified with the hpf request are both associated with the
current hyphenation language. The hla request is usually invoked by the troffrc file to set up
a default language.

.hlm n Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no
maximum. The default value is −1. This value is associated with the current environment.
Only lines output from an environment count towards the maximum associated with that envi-
ronment. Hyphens resulting from \% are counted; explicit hyphens are not.

.hpf file

Read hyphenation patterns from file; this is searched for in the same way that name.tmac is
searched for when the −mname option is specified. It should have the same format as (simple)
TEX patterns files. More specifically, the following scanning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if preceded by a
backslash.

• No support for ‘digraphs’ like \$.

• ˆˆxx (x is 0-9 or a-f) and ˆˆx (character code of x in the range 0-127) are recognized;
other use of ˆ causes an error.

• No macro expansion.

• hpf checks for the expression \patterns{. . .} (possibly with whitespace before and
after the braces). Everything between the braces is taken as hyphenation patterns.
Consequently, { and } are not allowed in patterns.

• Similarly, \hyphenation{. . .} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is treated as a list
of hyphenation patterns (only recognizing the % character as the start of a comment).

Use the hpfcode request to map the encoding used in hyphenation patterns files to groff’s
input encoding.

The set of hyphenation patterns is associated with the current language set by the hla request.
The hpf request is usually invoked by the troffrc file; a second call replaces the old patterns
with the new ones.

.hpfa file

The same as hpf except that the hyphenation patterns from file are appended to the patterns
already loaded in the current language.

.hpfcode a b c d . . .

After reading a hyphenation patterns file with the hpf or hpfa request, convert all characters
with character code a in the recently read patterns to character code b, character code c to d ,
etc. Initially, all character codes map to themselves. The arguments of hpfcode must be inte-
gers in the range 0 to 255. Note that it is even possible to use character codes which are
invalid in groff otherwise.

.hym n Set the hyphenation margin to n: when the current adjustment mode is not b, the line is not
hyphenated if the line is no more than n short. The default hyphenation margin is 0. The
default scaling indicator for this request is m. The hyphenation margin is associated with the
current environment. The current hyphenation margin is available in the \n[.hym] register.

Groff Version 1.20 5 January 2009 8

GROFF_DIFF(7) GROFF_DIFF(7)

.hys n Set the hyphenation space to n: When the current adjustment mode is b don’t hyphenate the
line if the line can be justified by adding no more than n extra space to each word space. The
default hyphenation space is 0. The default scaling indicator for this request is m. The
hyphenation space is associated with the current environment. The current hyphenation space
is available in the \n[.hys] register.

.itc n macro

Variant of .it for which a line interrupted with \c counts as one input line.

.kern n If n is non-zero or missing, enable pairwise kerning, otherwise disable it.

.length xx string

Compute the length of string and return it in the number register xx (which is not necessarily
defined before).

.linetabs n

If n is non-zero or missing, enable line-tabs mode, otherwise disable it (which is the default).
In line-tabs mode, tab distances are computed relative to the (current) output line. Otherwise
they are taken relative to the input line. For example, the following

.ds x a\t\c .ds y b\t\c .ds z c .ta 1i 3i \∗x \∗y \∗z

yields

a b c

In line-tabs mode, the same code gives

a b c

Line-tabs mode is associated with the current environment; the read-only number register
\n[.linetabs] is set to 1 if in line-tabs mode, and 0 otherwise.

.mso file

The same as the so request except that file is searched for in the same directories as macro files
for the the −m command line option. If the file name to be included has the form name.tmac
and it isn’t found, mso tries to include tmac.name instead and vice versa.

.nop anything

Execute anything. This is similar to ‘.if 1’.

.nroff Make the n built-in condition true and the t built-in condition false. This can be reversed
using the troff request.

.open stream filename

Open filename for writing and associate the stream named stream with it. See also the close
and write requests.

.opena stream filename

Like open, but if filename exists, append to it instead of truncating it.

.output string

Emit string directly to the intermediate output (subject to copy-mode interpretation); this is
similar to \! used at the top level. An initial double quote in string is stripped off to allow ini-
tial blanks.

.pev Print the current environment and each defined environment state on stderr.

.pnr Print the names and contents of all currently defined number registers on stderr.

.psbb filename

Get the bounding box of a PostScript image filename. This file must conform to Adobe’s
Document Structuring Conventions; the command looks for a %%BoundingBox comment to
extract the bounding box values. After a successful call, the coordinates (in PostScript units)
of the lower left and upper right corner can be found in the registers \n[llx], \n[lly], \n[urx],
and \n[ury], respectively. If some error has occurred, the four registers are set to zero.

.pso command

This behaves like the so request except that input comes from the standard output of

Groff Version 1.20 5 January 2009 9

GROFF_DIFF(7) GROFF_DIFF(7)

command .

.ptr Print the names and positions of all traps (not including input line traps and diversion traps) on
stderr. Empty slots in the page trap list are printed as well, because they can affect the priority
of subsequently planted traps.

.pvs ±n Set the post-vertical line space to n; default scale indicator is p. This value is added to each
line after it has been output. With no argument, the post-vertical line space is set to its previ-
ous value.

The total vertical line spacing consists of four components: .vs and \x with a negative value
which are applied before the line is output, and .pvs and \x with a positive value which are
applied after the line is output.

.rchar c1 c2 . . .

Remove the definitions of glyphs c1, c2, . . . This undoes the effect of a char request.

.return Within a macro, return immediately. If called with an argument, return twice, namely from
the current macro and from the macro one level higher. No effect otherwise.

.rfschar c1 c2 . . .

Remove the font-specific definitions of glyphs c1, c2, . . . This undoes the effect of a fschar
request.

.rj

.rj n Right justify the next n input lines. Without an argument right justify the next input line. The
number of lines to be right justified is available in the \n[.rj] register. This implicitly does
.ce 0. The ce request implicitly does .rj 0.

.rnn xx yy

Rename number register xx to yy.

.schar c string

Define global fallback character (or glyph) c to be string. The syntax of this request is the
same as the char request; a glyph defined with schar is searched after the list of fonts declared
with the special request but before the mounted special fonts.

.shc c Set the soft hyphen character to c. If c is omitted, the soft hyphen character is set to the
default \[hy]. The soft hyphen character is the glyph which is inserted when a word is
hyphenated at a line break. If the soft hyphen character does not exist in the font of the glyph
immediately preceding a potential break point, then the line is not broken at that point. Nei-
ther definitions (specified with the char request) nor translations (specified with the tr request)
are considered when finding the soft hyphen character.

.shift n In a macro, shift the arguments by n positions: argument i becomes argument i − n; arguments
1 to n are no longer available. If n is missing, arguments are shifted by 1. Shifting by neg-
ative amounts is currently undefined.

.sizes s1 s2 . . . sn [0]
This command is similar to the sizes command of a DESC file. It sets the available font sizes
for the current font to s1, s2, . . . , sn scaled points. The list of sizes can be terminated by an
optional 0. Each si can also be a range of sizes m-n. Contrary to the font file command, the
list can’t extend over more than a single line.

.special s1 s2 . . .

Fonts s1, s2, . . . are special and are searched for glyphs not in the current font. Without argu-
ments, reset the list of special fonts to be empty.

.spreadwarn limit

Make troff emit a warning if the additional space inserted for each space between words in an
output line is larger or equal to limit. A negative value is changed to zero; no argument tog-
gles the warning on and off without changing limit. The default scaling indicator is m. At
startup, spreadwarn is deactivated, and limit is set to 3m. For example, .spreadwarn 0.2m
causes a warning if troff must add 0.2m or more for each interword space in a line. This
request is active only if text is justified to both margins (using .ad b).

.sty n f Associate style f with font position n. A font position can be associated either with a font or
with a style. The current font is the index of a font position and so is also either a font or a

Groff Version 1.20 5 January 2009 10

GROFF_DIFF(7) GROFF_DIFF(7)

style. When it is a style, the font that is actually used is the font the name of which is the con-
catenation of the name of the current family and the name of the current style. For example, if
the current font is 1 and font position 1 is associated with style R and the current font family
is T, then font TR is used. If the current font is not a style, then the current family is ignored.
When the requests cs, bd, tkf, uf, or fspecial are applied to a style, then they are applied
instead to the member of the current family corresponding to that style. The default family
can be set with the −f command line option. The styles command in the DESC file controls
which font positions (if any) are initially associated with styles rather than fonts.

.substring xx n1 [n2]
Replace the string named xx with the substring defined by the indices n1 and n2. The first
character in the string has index 0. If n2 is omitted, it is taken to be equal to the string’s
length. If the index value n1 or n2 is negative, it is counted from the end of the string, going
backwards: The last character has index −1, the character before the last character has
index −2, etc.

.tkf f s1 n1 s2 n2

Enable track kerning for font f . When the current font is f the width of every glyph is
increased by an amount between n1 and n2; when the current point size is less than or equal to
s1 the width is increased by n1; when it is greater than or equal to s2 the width is increased by
n2; when the point size is greater than or equal to s1 and less than or equal to s2 the increase
in width is a linear function of the point size.

.tm1 string

Similar to the tm request, string is read in copy mode and written on the standard error, but an
initial double quote in string is stripped off to allow initial blanks.

.tmc string

Similar to tm1 but without writing a final newline.

.trf filename

Transparently output the contents of file filename. Each line is output as if preceded by \!;
however, the lines are not subject to copy-mode interpretation. If the file does not end with a
newline, then a newline is added. For example, you can define a macro x containing the con-
tents of file f , using

.di x .trf f .di

Unlike with the cf request, the file cannot contain characters such as NUL that are not valid
troff input characters.

.trin abcd

This is the same as the tr request except that the asciify request uses the character code (if
any) before the character translation. Example:

.trin ax .di xxx a .br .di .xxx .trin aa .asciify xxx .xxx

The result is x a. Using tr, the result would be x x.

.trnt abcd

This is the same as the tr request except that the translations do not apply to text that is trans-
parently throughput into a diversion with \!. For example,

.tr ab .di x \!.tm a .di .x

prints b; if trnt is used instead of tr it prints a.

.troff Make the n built-in condition false, and the t built-in condition true. This undoes the effect of
the nroff request.

.unformat xx

This request ‘unformats’ the diversion xx. Contrary to the asciify request, which tries to con-
vert formatted elements of the diversion back to input tokens as much as possible, .unformat
only handles tabs and spaces between words (usually caused by spaces or newlines in the
input) specially. The former are treated as if they were input tokens, and the latter are stretch-
able again. Note that the vertical size of lines is not preserved. Glyph information (font, font
size, space width, etc.) is retained. Useful in conjunction with the box and boxa requests.

Groff Version 1.20 5 January 2009 11

GROFF_DIFF(7) GROFF_DIFF(7)

.vpt n Enable vertical position traps if n is non-zero, disable them otherwise. Vertical position traps
are traps set by the wh or dt requests. Traps set by the it request are not vertical position
traps. The parameter that controls whether vertical position traps are enabled is global. Ini-
tially vertical position traps are enabled.

.warn n

Control warnings. n is the sum of the numbers associated with each warning that is to be
enabled; all other warnings are disabled. The number associated with each warning is listed in
troff(1). For example, .warn 0 disables all warnings, and .warn 1 disables all warnings
except that about missing glyphs. If n is not given, all warnings are enabled.

.warnscale si

Set the scaling indicator used in warnings to si. Valid values for si are u, i, c, p, and P. At
startup, it is set to i.

.while c anything

While condition c is true, accept anything as input; c can be any condition acceptable to an if
request; anything can comprise multiple lines if the first line starts with \{ and the last line
ends with \}. See also the break and continue requests.

.write stream anything

Write anything to the stream named stream. stream must previously have been the subject of
an open request. anything is read in copy mode; a leading " is stripped.

.writec stream anything

Similar to write but without writing a final newline.

.writem stream xx

Write the contents of the macro or string xx to the stream named stream. stream must previ-
ously have been the subject of an open request. xx is read in copy mode.

Extended escape sequences
\D’. . .’ All drawing commands of groff’s intermediate output are accepted. See subsection Drawing

Commands below for more information.

Extended requests
.cf filename

When used in a diversion, this embeds in the diversion an object which, when reread, will
cause the contents of filename to be transparently copied through to the output. In UNIX troff,
the contents of filename is immediately copied through to the output regardless of whether
there is a current diversion; this behaviour is so anomalous that it must be considered a bug.

.de xx yy

.am xx yy

.ds xx yy

.as xx yy

In compatibility mode, these requests behaves similar to .de1, .am1, .ds1, and .as1, respec-
tively: A ‘compatibility save’ token is inserted at the beginning, and a ‘compatibility restore’
token at the end, with compatibility mode switched on during execution.

.ev xx If xx is not a number, this switches to a named environment called xx. The environment
should be popped with a matching ev request without any arguments, just as for numbered
environments. There is no limit on the number of named environments; they are created the
first time that they are referenced.

.ss m n When two arguments are given to the ss request, the second argument gives the sentence space

size. If the second argument is not given, the sentence space size is the same as the word
space size. Like the word space size, the sentence space is in units of one twelfth of the
spacewidth parameter for the current font. Initially both the word space size and the sentence
space size are 12. Contrary to UNIX troff, GNU troff handles this request in nroff mode also;
a giv en value is then rounded down to the nearest multiple of 12. The sentence space size is
used in two circumstances. If the end of a sentence occurs at the end of a line in fill mode,
then both an inter-word space and a sentence space are added; if two spaces follow the end of
a sentence in the middle of a line, then the second space is a sentence space. Note that the
behaviour of UNIX troff are exactly that exhibited by GNU troff if a second argument is never

Groff Version 1.20 5 January 2009 12

GROFF_DIFF(7) GROFF_DIFF(7)

given to the ss request. In GNU troff, as in UNIX troff, you should always follow a sentence
with either a newline or two spaces.

.ta n1 n2 . . .nn T r1 r2 . . . rn

Set tabs at positions n1, n2, . . . , nn and then set tabs at nn + r1, nn + r2, . . . , nn + rn and then at
nn + rn + r1, nn + rn + r2, . . . , nn + rn + rn, and so on. For example,

.ta T .5i

sets tabs every half an inch.

New number registers
The following read-only registers are available:

\n[.br] Within a macro call, it is set to 1 if the macro is called with the ‘normal’ control character (‘.’
by default), and set to 0 otherwise. This allows to reliably modify requests.

.als bp∗orig bp .de bp .tm before bp .ie \\n[.br] .bp∗orig .el ’bp∗orig .tm after bp ..

Using this register outside of a macro makes no sense (it always returns zero in such cases).

\n[.C] 1 if compatibility mode is in effect, 0 otherwise.

\n[.cdp]
The depth of the last glyph added to the current environment. It is positive if the glyph
extends below the baseline.

\n[.ce] The number of lines remaining to be centered, as set by the ce request.

\n[.cht] The height of the last glyph added to the current environment. It is positive if the glyph
extends above the baseline.

\n[.color]
1 if colors are enabled, 0 otherwise.

\n[.csk]
The skew of the last glyph added to the current environment. The skew of a glyph is how far
to the right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.ev] The name or number of the current environment. This is a string-valued register.

\n[.fam]
The current font family. This is a string-valued register.

\n[.fn] The current (internal) real font name. This is a string-valued register. If the current font is a
style, the value of \n[.fn] is the proper concatenation of family and style name.

\n[.fp] The number of the next free font position.

\n[.g] Always 1. Macros should use this to determine whether they are running under GNU troff.

\n[.height]
The current height of the font as set with \H.

\n[.hla] The current hyphenation language as set by the hla request.

\n[.hlc] The number of immediately preceding consecutive hyphenated lines.

\n[.hlm]
The maximum allowed number of consecutive hyphenated lines, as set by the hlm request.

\n[.hy] The current hyphenation flags (as set by the hy request).

\n[.hym]
The current hyphenation margin (as set by the hym request).

\n[.hys]
The current hyphenation space (as set by the hys request).

\n[.in] The indentation that applies to the current output line.

\n[.int] Set to a positive value if last output line is interrupted (i.e., if it contains \c).

\n[.kern]
1 if pairwise kerning is enabled, 0 otherwise.

Groff Version 1.20 5 January 2009 13

GROFF_DIFF(7) GROFF_DIFF(7)

\n[.lg] The current ligature mode (as set by the lg request).

\n[.linetabs]
The current line-tabs mode (as set by the linetabs request).

\n[.ll] The line length that applies to the current output line.

\n[.lt] The title length as set by the lt request.

\n[.m] The name of the current drawing color. This is a string-valued register.

\n[.M] The name of the current background color. This is a string-valued register.

\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung.
Useful in conjunction with the \n[.trunc] register.

\n[.ns] 1 if no-space mode is active, 0 otherwise.

\n[.pe] 1 during a page ejection caused by the bp request, 0 otherwise.

\n[.pn] The number of the next page, either the value set by a pn request, or the number of the current
page plus 1.

\n[.ps] The current point size in scaled points.

\n[.psr]
The last-requested point size in scaled points.

\n[.pvs]
The current post-vertical line space as set with the pvs request.

\n[.rj] The number of lines to be right-justified as set by the rj request.

\n[.slant]
The slant of the current font as set with \S.

\n[.sr] The last requested point size in points as a decimal fraction. This is a string-valued register.

\n[.ss]
\n[.sss] These give the values of the parameters set by the first and second arguments of the ss request.

\n[.sty] The current font style. This is a string-valued register.

\n[.tabs]
A string representation of the current tab settings suitable for use as an argument to the ta
request.

\n[.trunc]
The amount of vertical space truncated by the most recently sprung vertical position trap, or, if
the trap was sprung by a ne request, minus the amount of vertical motion produced by the ne
request. In other words, at the point a trap is sprung, it represents the difference of what
the vertical position would have been but for the trap, and what the vertical position actually
is. Useful in conjunction with the \n[.ne] register.

\n[.U] Set to 1 if in safer mode and to 0 if in unsafe mode (as given with the −U command line
option).

\n[.vpt]
1 if vertical position traps are enabled, 0 otherwise.

\n[.warn]
The sum of the numbers associated with each of the currently enabled warnings. The number
associated with each warning is listed in troff(1).

\n[.x] The major version number. For example, if the version number is 1.03, then \n[.x] contains 1.

\n[.y] The minor version number. For example, if the version number is 1.03, then \n[.y] con-
tains 03.

\n[.Y] The revision number of groff.

\n[.zoom]
The zoom value of the current font, in multiples of 1/1000th. Zero if no magnification.

Groff Version 1.20 5 January 2009 14

GROFF_DIFF(7) GROFF_DIFF(7)

\n[llx]
\n[lly]
\n[urx]
\n[ury] These four registers are set by the psbb request and contain the bounding box values (in Post-

Script units) of a given PostScript image.

The following read/write registers are set by the \w escape sequence:

\n[rst]
\n[rsb] Like the st and sb registers, but take account of the heights and depths of glyphs.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph
before a subscript.

\n[skw]
How far to right of the center of the last glyph in the \w argument, the center of an accent from
a roman font should be placed over that glyph.

Other available read/write number registers are:

\n[c.] The current input line number. \n[.c] is a read-only alias to this register.

\n[hours]
The number of hours past midnight. Initialized at start-up.

\n[hp] The current horizontal position at input line.

\n[minutes]
The number of minutes after the hour. Initialized at start-up.

\n[seconds]
The number of seconds after the minute. Initialized at start-up.

\n[systat]
The return value of the system() function executed by the last sy request.

\n[slimit]
If greater than 0, the maximum number of objects on the input stack. If less than or equal to 0,
there is no limit on the number of objects on the input stack. With no limit, recursion can con-
tinue until virtual memory is exhausted.

\n[year]
The current year. Note that the traditional troff number register \n[yr] is the current year
minus 1900.

Miscellaneous
troff predefines a single (read/write) string-based register, \∗[.T], which contains the argument given to
the −T command line option, namely the current output device (for example, latin1 or ascii). Note that
this is not the same as the (read-only) number register \n[.T] which is defined to be 1 if troff is called
with the −T command line option, and zero otherwise. This behaviour is different to UNIX troff.

Fonts not listed in the DESC file are automatically mounted on the next available font position when
they are referenced. If a font is to be mounted explicitly with the fp request on an unused font position,
it should be mounted on the first unused font position, which can be found in the \n[.fp] register;
although troff does not enforce this strictly, it does not allow a font to be mounted at a position whose
number is much greater than that of any currently used position.

Interpolating a string does not hide existing macro arguments. Thus in a macro, a more efficient way of
doing

.xx \\$@

is

\\∗[xx]\\

If the font description file contains pairwise kerning information, glyphs from that font are kerned.
Kerning between two glyphs can be inhibited by placing a \& between them.

In a string comparison in a condition, characters that appear at different input levels to the first
delimiter character are not recognized as the second or third delimiters. This applies also to the tl

Groff Version 1.20 5 January 2009 15

GROFF_DIFF(7) GROFF_DIFF(7)

request. In a \w escape sequence, a character that appears at a different input level to the starting
delimiter character is not recognized as the closing delimiter character. The same is true for \A, \b, \B,
\C, \l, \L, \o, \X, and \Z. When decoding a macro or string argument that is delimited by double
quotes, a character that appears at a different input level to the starting delimiter character is not recog-
nized as the closing delimiter character. The implementation of \$@ ensures that the double quotes
surrounding an argument appear at the same input level, which is different to the input level of the
argument itself. In a long escape name] is not recognized as a closing delimiter except when it occurs
at the same input level as the opening]. In compatibility mode, no attention is paid to the input-level.

There are some new types of condition:

.if rxxx True if there is a number register named xxx.

.if dxxx True if there is a string, macro, diversion, or request named xxx.

.if mxxx

True if there is a color named xxx.

.if cch True if there is a character (or glyph) ch available; ch is either an ASCII character or a glyph
(special character) \N’xxx’, \(xx or \[xxx]; the condition is also true if ch has been defined by
the char request.

.if F f True if font f exists. f is handled as if it was opened with the ft request (this is, font translation
and styles are applied), without actually mounting it.

.if Ss True if style s has been registered. Font translation is applied.

The tr request can now map characters onto \ .

The space width emitted by the \| and \ˆ escape sequences can be controlled on a per-font basis. If there
is a glyph named \| or \ˆ, respectively (note the leading backslash), defined in the current font file, use
this glyph’s width instead of the default value.

It is now possible to have whitespace between the first and second dot (or the name of the ending
macro) to end a macro definition. Example:

.if t \{\ . de bar . nop Hello, I’m ‘bar’. . . .\}

INTERMEDIATE OUTPUT FORMAT
This section describes the format output by GNU troff. The output format used by GNU troff is very
similar to that used by Unix device-independent troff. Only the differences are documented here.

Units
The argument to the s command is in scaled points (units of points/n, where n is the argument to the
sizescale command in the DESC file). The argument to the x Height command is also in scaled
points.

Text Commands
Nn Print glyph with index n (a non-negative integer) of the current font.

If the tcommand line is present in the DESC file, troff uses the following two commands.

txxx xxx is any sequence of characters terminated by a space or a newline (to be more precise, it is
a sequence of glyphs which are accessed with the corresponding characters); the first character
should be printed at the current position, the current horizontal position should be increased by
the width of the first character, and so on for each character. The width of the glyph is that
given in the font file, appropriately scaled for the current point size, and rounded so that it is a
multiple of the horizontal resolution. Special characters cannot be printed using this com-
mand.

un xxx This is same as the t command except that after printing each character, the current horizontal
position is increased by the sum of the width of that character and n.

Note that single characters can have the eighth bit set, as can the names of fonts and special characters.

The names of glyphs and fonts can be of arbitrary length; drivers should not assume that they are only
two characters long.

When a glyph is to be printed, that glyph is always in the current font. Unlike device-independent troff,
it is not necessary for drivers to search special fonts to find a glyph.

Groff Version 1.20 5 January 2009 16

GROFF_DIFF(7) GROFF_DIFF(7)

For color support, some new commands have been added:

mc cyan magenta yellow

md
mg gray

mk cyan magenta yellow black

mr red green blue

Set the color components of the current drawing color, using various color schemes. md
resets the drawing color to the default value. The arguments are integers in the range 0 to
65536.

The x device control command has been extended.

x u n If n is 1, start underlining of spaces. If n is 0, stop underlining of spaces. This is needed for
the cu request in nroff mode and is ignored otherwise.

Drawing Commands
The D drawing command has been extended. These extensions are not used by GNU pic if the −n
option is given.

Df n\n Set the shade of gray to be used for filling solid objects to n; n must be an integer between 0
and 1000, where 0 corresponds solid white and 1000 to solid black, and values in between cor-
respond to intermediate shades of gray. This applies only to solid circles, solid ellipses and
solid polygons. By default, a level of 1000 is used. Whatever color a solid object has, it
should completely obscure everything beneath it. A value greater than 1000 or less than 0 can
also be used: this means fill with the shade of gray that is currently being used for lines and
text. Normally this is black, but some drivers may provide a way of changing this.

The corresponding \D’f. . .’ command shouldn’t be used since its argument is always rounded
to an integer multiple of the horizontal resolution which can lead to surprising results.

DC d\n Draw a solid circle with a diameter of d with the leftmost point at the current position.

DE dx dy\n
Draw a solid ellipse with a horizontal diameter of dx and a vertical diameter of dy with the
leftmost point at the current position.

Dp dx1 dy1 dx2 dy2
. . . dxn dyn\n

Draw a polygon with, for i = 1, . . . , n + 1, the i-th vertex at the current position +
i−1

j=1
Σ(dx j , dy j).

At the moment, GNU pic only uses this command to generate triangles and rectangles.

DP dx1 dy1 dx2 dy2
. . . dxn dyn\n

Like Dp but draw a solid rather than outlined polygon.

Dt n\n Set the current line thickness to n machine units. Traditionally Unix troff drivers use a line
thickness proportional to the current point size; drivers should continue to do this if no Dt
command has been given, or if a Dt command has been given with a negative value of n. A
zero value of n selects the smallest available line thickness.

A difficulty arises in how the current position should be changed after the execution of these com-
mands. This is not of great importance since the code generated by GNU pic does not depend on this.
Given a drawing command of the form

\D’c x1 y1 x2 y2
. . . xn yn’

where c is not one of c, e, l, a, or , Unix troff treats each of the xi as a horizontal quantity, and each of

the yi as a vertical quantity and assumes that the width of the drawn object is
n

i=1
Σ xi , and that the height

is
n

i=1
Σ yi . (The assumption about the height can be seen by examining the st and sb registers after using

such a D command in a \w escape sequence). This rule also holds for all the original drawing com-
mands with the exception of De. For the sake of compatibility GNU troff also follows this rule, even
though it produces an ugly result in the case of the Dt and Df, and, to a lesser extent, DE commands.
Thus after executing a D command of the form

Dc x1 y1 x2 y2
. . . xn yn\n

Groff Version 1.20 5 January 2009 17

GROFF_DIFF(7) GROFF_DIFF(7)

the current position should be increased by (
n

i=1
Σ xi ,

n

i=1
Σ yi).

Another set of extensions is

DFc cyan magenta yellow\n
DFd\n
DFg gray\n
DFk cyan magenta yellow black\n
DFr red green blue\n

Set the color components of the filling color similar to the m commands above.

The current position isn’t changed by those colour commands (contrary to Df).

Device Control Commands
There is a continuation convention which permits the argument to the x X command to contain new-
lines: when outputting the argument to the x X command, GNU troff follows each newline in the argu-
ment with a + character (as usual, it terminates the entire argument with a newline); thus if the line after
the line containing the x X command starts with +, then the newline ending the line containing the x X
command should be treated as part of the argument to the x X command, the + should be ignored, and
the part of the line following the + should be treated like the part of the line following the x X com-
mand.

The first three output commands are guaranteed to be:

x T device

x res n h v

x init

INCOMPATIBILITIES
In spite of the many extensions, groff has retained compatibility to classical troff to a large degree. For
the cases where the extensions lead to collisions, a special compatibility mode with the restricted, old
functionality was created for groff.

Groff Language
groff provides a compatibility mode that allows to process roff code written for classical troff or for
other implementations of roff in a consistent way.

Compatibility mode can be turned on with the −C command line option, and turned on or off with the
.cp request. The number register \n(.C is 1 if compatibility mode is on, 0 otherwise.

This became necessary because the GNU concept for long names causes some incompatibilities. Clas-

sical troff interprets

.dsabcd

as defining a string ab with contents cd. In groff mode, this is considered as a call of a macro named
dsabcd.

Also classical troff interprets \∗[or \n[as references to a string or number register called [while groff

takes this as the start of a long name.

In compatibility mode, groff interprets these things in the traditional way; so long names are not recog-
nized.

On the other hand, groff in GNU native mode does not allow to use the single-character escapes \\
(backslash), \| (vertical bar), \ˆ (caret), \& (ampersand), \{ (opening brace), \} (closing brace), ‘\ ’
(space), \’ (single quote), \‘ (backquote), \− (minus), _ (underline), \! (bang), \% (percent), and \c
(character c) in names of strings, macros, diversions, number registers, fonts or environments, whereas
classical troff does.

The \A escape sequence can be helpful in avoiding these escape sequences in names.

Fractional point sizes cause one noteworthy incompatibility. In classical troff , the ps request ignores
scale indicators and so

.ps 10u

sets the point size to 10 points, whereas in groff native mode the point size is set to 10 scaled points.

In groff , there is a fundamental difference between unformatted input characters, and formatted output

Groff Version 1.20 5 January 2009 18

GROFF_DIFF(7) GROFF_DIFF(7)

characters (glyphs). Everything that affects how a glyph is output is stored with the glyph; once a
glyph has been constructed it is unaffected by any subsequent requests that are executed, including the
bd, cs, tkf, tr, or fp requests.

Normally glyphs are constructed from input characters at the moment immediately before the glyph is
added to the current output line. Macros, diversions and strings are all, in fact, the same type of object;
they contain lists of input characters and glyphs in any combination.

Special characters can be both; before being added to the output, they act as input entities, afterwards
they denote glyphs.

A glyph does not behave like an input character for the purposes of macro processing; it does not
inherit any of the special properties that the input character from which it was constructed might have
had. The following example makes things clearer.

.di x \\\\ .br .di .x

With GNU troff this is printed as \\. So each pair of input backslashes ‘\\’ is turned into a single output
backslash glyph ‘\’ and the resulting output backslashes are not interpreted as escape characters when
they are reread.

Classical troff would interpret them as escape characters when they were reread and would end up
printing a single backslash ‘\’.

In GNU, the correct way to get a printable version of the backslash character ‘\’ is the \(rs escape
sequence, but classical troff does not provide a clean feature for getting a non-syntactical backslash. A
close method is the printable version of the current escape character using the \e escape sequence; this
works if the current escape character is not redefined. It works in both GNU mode and compatibility
mode, while dirty tricks like specifying a sequence of multiple backslashes do not work reliably; for the
different handling in diversions, macro definitions, or text mode quickly leads to a confusion about the
necessary number of backslashes.

To store an escape sequence in a diversion that is interpreted when the diversion is reread, either the tra-
ditional \! transparent output facility or the new \? escape sequence can be used.

Intermediate Output
The groff intermediate output format is in a state of evolution. So far it has some incompatibilities, but
it is intended to establish a full compatibility to the classical troff output format. Actually the following
incompatibilities exist:

• The positioning after the drawing of the polygons conflicts with the classical definition.

• The intermediate output cannot be rescaled to other devices as classical ‘device-independent’ troff
did.

AUTHORS
Copyright (C) 1989, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.3 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site This document was written by James Clark, with modifications by Werner Lem-
berg and Bernd Warken

This document is part of groff , the GNU roff distribution. Formerly, the contents of this document was
kept in the manual page troff(1). Only the parts dealing with the language aspects of the different roff

systems were carried over into this document. The troff command line options and warnings are still
documented in troff(1).

SEE ALSO
The groff info file, cf. info(1) presents all groff documentation within a single document.

groff(1)
A list of all documentation around groff .

groff(7)
A description of the groff language, including a short, but complete reference of all predefined
requests, registers, and escapes of plain groff . From the command line, this is called using

Groff Version 1.20 5 January 2009 19

GROFF_DIFF(7) GROFF_DIFF(7)

man 7 groff

roff(7) A survey of roff systems, including pointers to further historical documentation.

[CSTR #54]
The Nroff/Troff User’s Manual by J. F. Ossanna of 1976 in the revision of Brian Kernighan of
1992, being the classical troff documentation

Groff Version 1.20 5 January 2009 20

GROFF_HDTBL(7) GROFF_HDTBL(7)

GROFF_HDTBL

NAME
groff_hdtbl − groff ‘hdtbl’ macros for generation of tables

DESCRIPTION
The hdtbl macros consist of four base and three optional macros, controlled by about twenty argu-
ments. The syntax is simple and similar to the HTML table model and nearly as flexible: You can
write sequences of tokens (macro calls with their arguments and content data), separated by blanks and
beginning with a macro call, into the same line to get compact and cleanly arrranged input. An advan-
tage of hdtbl is that the tables are constructed without calling a preprocessor; this means that groff’s
full macro capabilities are available. On the other hand, table processing with hdtbl is much slower
than using the tbl(@MAN1EXT) preprocessor. A further advantage is that the HTML-like syntax of
hdtbl will be easily converted to HTML; this is not implemented yet.

USAGE
The simplest well-formed table consists of just single calls to the four base table macros in the right
order. Here we construct a table with only one cell.

.TBL

.TR

.TD
contents of the table cell

.ETB

Equivalent to the above is the following notation.

.TBL .TR .TD contents of the table cell .ETB

By default, the formatted table is inserted into the surrounding text at the place of its definition. If the
vertical space isn’t sufficient, it is placed at the top of the next page. Tables can also be stored for later
insertion.

Using ‘row-number∗column-number’ as the data for the table cells, a table with two rows and
two columns can be written as

.TBL cols=2

. TR .TD 1∗1 .TD 1∗2

. TR .TD 2∗1 .TD 2∗2

.ETB

Here we see a difference to HTML tables: The number of columns must be explicitly specified using
the ‘cols=m’ argument (or indirectly via the ‘width’ argument, see below).

The contents of a table cell is arbitrary; for example, it can be another table, without restriction to the
nesting depth. A giv en table layout can be either constructed with suitably nested tables or with proper
arguments to .TD and .TH, controlling column and row spanning. Note, however, that this table

.TBL

. TR

. TD

. nop 1∗1 1∗2

. TR

. TD

. TBL cols=2 border=

. TR

. TD

. nop 2∗1

. TD

. nop 2∗2

. ETB

.ETB

and this table

.TBL cols=2

. TR

Groff Version 1.20 5 January 2009 1

GROFF_HDTBL(7) GROFF_HDTBL(7)

. TD colspan=2

. nop 1∗1 1∗2

. TR

. TD

. nop 2∗1

. TD

. nop 2∗2

.ETB

are similar but not identical.

Here the latter table in a more compact form.

.TBL cols=2 .TR ".TD colspan=2" 1∗1 1∗2

. TR .TD 2∗1 .TD 2∗2 .ETB

If a macro has one or more arguments, and it is not starting a line, it must be enclosed in double quotes.

MACROS AND ARGUMENTS
The order of macro calls and other tokens follows the HTML model. In the following list, valid prede-
cessors and successors of all hdtbl macros are given, together with the possible arguments.

Macro arguments are separated by blanks. The order of arguments is arbitrary; they are of the form

key=value

or

key='value1 [value2 [. . .]]'

with the only exception of the optional argument of the macro .ETB, which is the string ‘hold’.
Another possible form is

"key=value1 [value2 [. . .]]"

However, this is limited to the case where the macro is the first one in the line and not already enclosed
in double quotes.

Argument values specified below as c are colors predefined by groff or colors defined by the user with
the .defcolor request. Argument values d are decimal numbers with or without decimal point.
Argument values m are natural numbers. Argument values n are numerical values with the usual groff
scaling indicators. Some of the arguments are specific to one or two macros, but most of them can be
specified with .TBL, .TR, .TD, and .TH. These common arguments are explained in the next sub-
section.

Most of the argument default values can be changed by the user by setting corresponding default regis-
ters or strings, as listed below.

.TBL [args]
Begin a new table.

predecessor: .TD, .TH, .ETB, cell contents
successor: .CPTN, .TR
arguments:

border=[n]
Thickness of the surrounding box border. ‘border=’ (no value) means
neither a surrounding box border nor any horizontal or vertical separator
lines between the table rows and cells. ‘border=0’ suppresses the sur-
rounding box border, but still allows separator lines between cells and rows.
Default: ‘border=.1n’ (register ‘t∗b’).

bc=c Border color.
Default: ‘bc=red4’ (string ‘t∗bc’).

cols=m
Number of table columns. This argument is necessary if more than one col-
umn is in the table and no ‘width’ arguments are present.
Default: ‘cols=1’ (register ‘t∗cols’).

cpd=n Cell padding, i.e., the extra space between the cell space border and the cell
contents.

Groff Version 1.20 5 January 2009 2

GROFF_HDTBL(7) GROFF_HDTBL(7)

Default: ‘cpd=.5n’ (register ‘t∗cpd’).
csp=n Cell spacing, i.e., the extra space between the table border or vertical or hor-

izontal lines between cells and the cellspace.
Default: ‘csp=.5n’ (register ‘t∗csp’).

tal=l |c |r
Horizontal alignment of the table, if it is smaller than the line width.
‘tal=l’: left alignment. ‘tal=c’: centered alignment. ‘tal=r’: right
alignment.
Default: ‘tal=l’ (register ‘t∗tal’).

width='w1 [w2 [. . .]]'
Widths of table cells. w1, w2, . . . are either numbers of type n or natural
numbers with the pseudo-scaling indicator ‘%’, with the meaning “percent of
the actual line length (or column length for inner tables, respectively)”. If
there are less width values than table columns, the last width value is used
for the remaining cells. The argument

width='1.5i 10%'

for example indicates that the first column is 1.5 inches wide; the remaining
columns take 1/10 of the column length each.
Default: The table width equals the outer line length or column length; the
columns have equal widths.

height=n
Height of the table. If the table with its contents is lower than n, the last
row is stretched to this value.

.CPTN [args]
Te xt of caption.

The (optionally numbered) table caption. .CPTN is optional.

predecessor: .TBL
successor: .TR
arguments:

val=t |b
Vertical alignment of the table caption. ‘val=t’: The caption is placed
above the table. ‘val=b’: The caption is placed below the table.
Default: ‘val=t’ (string ‘t∗cptn’).

.TR [args]
Begin a new table row.

predecessor: .TBL, .CPTN, .TD, .TH, .ETB, cell contents
successor: .TD, .TH
arguments:

height=n
The height of the row. If a cell in the row is higher than n this value is
ignored; otherwise the row height is stretched to n.

.TD [args [cell contents]]
Begin a table data cell.

.TH [args [cell contents]]
Begin a table header cell.

Arguments and cell contents can be mixed. The macro .TH is not really necessary and differs
from .TD only in three default settings, similar to the <TH> and <TD> HTML tags: The con-
tents of .TH is horizontally and vertically centered and typeset in boldface.

predecessor: .TR, .TD, .TH, .ETB, cell contents
successor: .TD, .TH, .TR, .ETB, cell contents
arguments:

colspan=m
The width of this cell is the sum of the widths of the m cells above and

Groff Version 1.20 5 January 2009 3

GROFF_HDTBL(7) GROFF_HDTBL(7)

below this row.
rowspan=m

The height of this cell is the sum of the heights of the m cells left and right
of this column.

Remark: Overlapping of column and row spanning, as in the following ta-
ble fragment (the overlapping happens in the second cell in the second row),
is invalid and causes incorrect results.

.TR .TD 1∗1 ".TD 1∗2 rowspan=2" .TD 1∗3

.TR ".TD 2∗1 colspan=2" .TD 2∗3

.ETB [hold]
End of the table.

This macro finishes a table. It causes one of the following actions.

• If the argument ‘hold’ is giv en, the table is held until it is freed by calling the macro
.t∗free, which in turn prints the table immediately, either at the current position or at
the top of the next page if its height is larger than the remaining space on the page.

• Otherwise, if the table is higher than the remaining space on the page, it is printed at the
top of the next page.

• If none of the two above constraints hold, the table is printed immediately at the place of
its definition.

predecessor: .TD, .TH, .ETB, cell contents
successor: .TBL, .TR, .TD, .TH, .ETB, cell contents
arguments:

hold Prevent the table from being printed until it is freed by calling the macro
.t∗free. This argument is ignored for inner (nested) tables.

.t∗free [n]
Free the next held table or n held tables. Call this utility macro to print tables which are held
by using the ‘hold’ argument of the .ETB macro.

Arguments common to .TBL, .TR, .TD, and .TH
The arguments described in this section can be specified with the .TBL and .TR macros, but they are
ev entually passed on to the table cells. If omitted, the defaults take place, which the user can change by
setting the corresponding default registers or strings, as documented below. Setting an argument with
the .TBL macro has the same effect as setting it for all rows in the table. Setting an argument with a
.TR macro has the same effect as setting it for all the .TH or .TD macro in this row.

bgc=[c]
The background color of the table cells. This includes the area specified with the ‘csp’ argu-
ment. The argument ‘bgc=’ (no value) suppresses a background color; this makes the back-
ground transparent.
Default: ‘bgc=bisque’ (string ‘t∗bgc’).

fgc=c The foreground color of the cell contents.
Default: ‘fgc=red4’ (string ‘t∗fgc’).

ff=name
The font family for the table. name is one of the groff font families, for example A for the
Av antGarde fonts or HN for Helvetica-Narrow.
Default: The font family found before the table (string ‘t∗ff’).

fst=style
The font style for the table. One of R, I, B, or BI for roman, bold, italic, or bold italic,
respectively. As with roff’s .ft request the ‘fst’ argument can be used to specify the font
family and font style together, for example ‘fst=HNBI’ instead of ‘ff=HN’ and ‘fst=BI’.
Default: The font style in use right before the table (string ‘t∗fst’).

fsz='d1 [d2]'
A decimal or fractional factor d1, by which the point size for the table is changed, and d2, by
which the vertical line spacing is changed. If d2 is omitted, value d1 is taken for both.
Default: ‘fsz='1.0 1.0'’ (string ‘t∗fsz’).

Groff Version 1.20 5 January 2009 4

GROFF_HDTBL(7) GROFF_HDTBL(7)

hal=l |c |b |r
Horizontal alignment of the cell contents in the table. ‘hal=l’: left alignment. ‘hal=c’:
centered alignment. ‘hal=b’: both (left and right) alignment. ‘hal=r’: right alignment.
Default: ‘hal=b’ (string ‘t∗hal’).

val=t |m |b
Vertical alignment of the cell contents in the table for cells lower than the current row.
‘val=t’: alignment below the top of the cell. ‘val=m’: alignment in the middle of the cell.
‘val=b’: alignment above the cell bottom.
Default: ‘val=t’ (string ‘t∗val’).

hl=[s |d]
Horizontal line between the rows. If specified with .TD or .TH this is a separator line to the
cell below. ‘hl=’ (no value): no separator line. ‘hl=s’: a single separator line between the
rows. ‘hl=d’: a double separator line.

The thickness of the separator lines is the half of the border thickness, but at least 0.1 inches.
The distance between the double lines is equal to the line thickness.

Remark: Together with ‘border=0’ for proper formatting the value of ‘csp’ must be at
least .05 inches for single separator lines and .15 inches for double separator lines.
Default: ‘hl=s’ (string ‘t∗hl’).

vl=[s |d]
Vertical separator line between the cells. If specified with .TD or .TH this is a separator line
to the cell on the right. ‘vl=s’: a single separator line between the cells. ‘vl=d’: a double
separator line. ‘vl=’ (no value): no vertical cell separator lines. For more information see the
documentation of the ‘hl’ argument above.
Default: ‘vl=s’ (string ‘t∗vl’).

HDTBL CUSTOMIZATION
A table which does not fit on a partially filled page is printed automatically on the top of the next page
if you append the little utility macro t∗hm to the page header macro of your document’s main macro
package. For example, say

.am pg@top

. t∗hm

..

if you use the ms macro package.

hdtbl has built-in page header and page footer macros, HM and BM. If they interfere with your own
header and footer macros, simply say .rm HM and .rm BM to remove them.

AUTHOR
Joachim Walsdorff

BUGS AND SUGGESTIONS
Please send your commments to the groff mailing list or directly to the author.

Groff Version 1.20 5 January 2009 5

GROFF_MAN(7) GROFF_MAN(7)

GROFF_MAN

NAME
groff_man − groff ‘man’ macros to support generation of man pages

SYNOPSIS
[options . . .] [files . . .] [options . . .] [files . . .]

DESCRIPTION
The man macros used to generate man pages with groff were written by James Clark. This document
provides a brief summary of the use of each macro in that package.

OPTIONS
The man macros understand the following command line options (which define various registers).

−rcR=1
This option (the default if in nroff mode) creates a single, very long page instead of multiple
pages. Say −rcR=0 to disable it.

−rC1 If more than one manual page is given on the command line, number the pages continuously,
rather than starting each at 1.

−rD1 Double-sided printing. Footers for even and odd pages are formatted differently.

−rFT=dist

Set distance of the footer relative to the bottom of the page if negative or relative to the top if
positive. The default is -0.5i.

−rHY= flags

Set hyphenation flags. Possible values are 1 to hyphenate without restrictions, 2 to not
hyphenate the last word on a page, 4 to not hyphenate the last two characters of a word, and
8 to not hyphenate the first two characters of a word. These values are additive; the default
is 14.

−rIN=width

Set body text indentation to width. The default is 7n for nroff , 7.2n for troff . For nroff , this
value should always be an integer multiple of unit ‘n’ to get consistent indentation.

−rLL=line-length

Set line length. If this option is not given, the line length is set to respect any value set by a
prior ‘.ll’ request, (which must be in effect when the ‘.TH’ macro is invoked), if this differs
from the built−in default for the formatter; otherwise it defaults to 78n in nroff mode and 6.5i
in troff mode.

Note that the use of a ‘.ll’ request to initialize the line length is supported for backward com-
patibility with some versions of the man program; direct initialization of the ‘LL’ register
should always be preferred to the use of such a request. In particular, note that a ‘.ll 65n’
request does not preserve the normal nroff default line length, (the man default initialization to
78n prevails), whereas, the ‘-rLL=65n’ option, or an equivalent ‘.nr LL 65n’ request preceding
the use of the ‘TH’ macro, does set a line length of 65n.

−rLT=title-length

Set title length. If this option is not given, the title length defaults to the line length.

−rPnnn

Enumeration of pages start with nnn rather than with 1.

−rSxx Base document font size is xx points (xx can be 10, 11, or 12) rather than 10 points.

−rSN=width

Set sub-subheading indentation to width. The default is 3n.

−rXnnn

After page nnn, number pages as nnna, nnnb, nnnc, etc. For example, the option ‘−rX2’ pro-
duces the following page numbers: 1, 2, 2a, 2b, 2c, etc.

USAGE
This section describes the available macros for manual pages. For further customization, put additional

Groff Version 1.20 5 January 2009 1

GROFF_MAN(7) GROFF_MAN(7)

macros and requests into the file man.local which is loaded immediately after the man package.

.TH title section [extra1] [extra2] [extra3]
Set the title of the man page to title and the section to section, which must take on a value
between 1 and 8. The value section may also have a string appended, e.g. ‘.pm’, to indicate a
specific subsection of the man pages. Both title and section are positioned at the left and right
in the header line (with section in parentheses immediately appended to title. extra1 is posi-
tioned in the middle of the footer line. extra2 is positioned at the left in the footer line (or at
the left on even pages and at the right on odd pages if double-sided printing is active). extra3

is centered in the header line.

For HTML output, headers and footers are completely suppressed.

Additionally, this macro starts a new page; the new line number is 1 again (except if the ‘-rC1’
option is given on the command line) -- this feature is intended only for formatting multiple
man pages; a single man page should contain exactly one TH macro at the beginning of the
file.

.SH [text for a heading]
Set up an unnumbered section heading sticking out to the left. Prints out all the text following
SH up to the end of the line (or the text in the next input line if there is no argument to SH) in
bold face (or the font specified by the string HF), one size larger than the base document size.
Additionally, the left margin and the indentation for the following text is reset to the default
values.

.SS [text for a heading]
Set up a secondary, unnumbered section heading. Prints out all the text following SS up to the
end of the line (or the text in the next input line if there is no argument to SS) in bold face (or
the font specified by the string HF), at the same size as the base document size. Additionally,
the left margin and the indentation for the following text is reset to the default values.

.TP [nnn]
Set up an indented paragraph with label. The indentation is set to nnn if that argument is sup-
plied (the default unit is ‘n’ if omitted), otherwise it is set to the previous indentation value
specified with TP, IP, or HP (or to the default value if none of them have been used yet).

The first input line of text following this macro is interpreted as a string to be printed flush-
left, as it is appropriate for a label. It is not interpreted as part of a paragraph, so there is no
attempt to fill the first line with text from the following input lines. Nevertheless, if the label
is not as wide as the indentation the paragraph starts at the same line (but indented), continu-
ing on the following lines. If the label is wider than the indentation the descriptive part of the
paragraph begins on the line following the label, entirely indented. Note that neither font
shape nor font size of the label is set to a default value; on the other hand, the rest of the text
has default font settings.

The TP macro is the macro used for the explanations you are just reading.

.TQ The TQ macro sets up header continuation for a .TP macro. With it, you can stack up any
number of labels (such as in a glossary, or list of commands) before beginning the indented
paragraph. For an example, look just past the next paragraph.

This macro is not defined on legacy Unix systems running classic troff. To be certain your
page will be portable to those systems, copy its definition from the an-ext.tmac file of a groff
installation.

.LP

.PP

.P These macros are mutual aliases. Any of them causes a line break at the current position, fol-
lowed by a vertical space downwards by the amount specified by the PD macro. The font size
and shape are reset to the default value (normally 10pt Roman). Finally, the current left mar-
gin and the indentation are restored.

.IP [designator] [nnn]
Set up an indented paragraph, using designator as a tag to mark its beginning. The indentation

Groff Version 1.20 5 January 2009 2

GROFF_MAN(7) GROFF_MAN(7)

is set to nnn if that argument is supplied (the default unit is ‘n’ if omitted), otherwise it is set
to the previous indentation value specified with TP, IP, or HP (or to the default value if none
of them have been used yet). Font size and face of the paragraph (but not the designator) are
reset to its default values.

To start an indented paragraph with a particular indentation but without a designator, use ‘""’
(two doublequotes) as the second argument.

For example, the following paragraphs were all set up with bullets as the designator, using
‘.IP \(bu 4’. The whole block has been enclosed with ‘.RS’ and ‘.RE’ to set the left margin
temporarily to the current indentation value.

• IP is one of the three macros used in the man package to format lists.

• HP is another. This macro produces a paragraph with a left hanging indentation.

• TP is another. This macro produces an unindented label followed by an indented para-
graph.

.HP [nnn]
Set up a paragraph with hanging left indentation. The indentation is set to nnn if that argu-
ment is supplied (the default unit is ‘n’ if omitted), otherwise it is set to the previous indenta-
tion value specified with TP, IP, or HP (or to the default value if none of them have been used
yet). Font size and face are reset to its default values. The following paragraph illustrates the
effect of this macro with hanging indentation set to 4 (enclosed by .RS and .RE to set the left
margin temporarily to the current indentation):

This is a paragraph following an invocation of the HP macro. As you can see, it produces a
paragraph where all lines but the first are indented.

Use of this presentation-level macro is deprecated. While it is universally portable to legacy
Unix systems, a hanging indentation cannot be expressed naturally under HTML, and many
HTML-based manual viewers simply interpret it as a starter for a normal paragraph. Thus,
any information or distinction you tried to express with the indentation may be lost.

.RS [nnn]
This macro moves the left margin to the right by the value nnn if specified (default unit is ‘n’);
otherwise it is set to the previous indentation value specified with TP, IP, or HP (or to the
default value if none of them have been used yet). The indentation value is then set to the
default.

Calls to the RS macro can be nested.

.RE [nnn]
This macro moves the left margin back to level nnn, restoring the previous left margin. If no
argument is given, it moves one level back. The first level (i.e., no call to RS yet) has num-
ber 1, and each call to RS increases the level by 1.

.EX

.EE Example/End Example. After EX, filling is disabled and the font is set to constant-width.
This is useful for formatting code, command, and configuration-file examples. The EE macro
restores the previous font.

These macros are defined on many (but not all) legacy Unix systems running classic troff. To
be certain your page will be portable to those systems, copy their definitions from the
an-ext.tmac file of a groff installation.

To summarize, the following macros cause a line break with the insertion of vertical space (which
amount can be changed with the PD macro): SH, SS, TP, TQ, LP (PP, P), IP, and HP. The macros
RS, RE, EX, and EE also cause a break but no insertion of vertical space.

MACROS TO SET FONTS
The standard font is Roman; the default text size is 10 point.

.SM [text]
Causes the text on the same line or the text on the next input line to appear in a font that is one
point size smaller than the default font.

Groff Version 1.20 5 January 2009 3

GROFF_MAN(7) GROFF_MAN(7)

.SB [text]
Causes the text on the same line or the text on the next input line to appear in boldface font,
one point size smaller than the default font.

.BI text Causes text on the same line to appear alternately in bold face and italic. The text must be on
the same line as the macro call. Thus

.BI this "word and" that

would cause ‘this’ and ‘that’ to appear in bold face, while ‘word and’ appears in italics.

.IB text Causes text to appear alternately in italic and bold face. The text must be on the same line as
the macro call.

.RI text Causes text on the same line to appear alternately in roman and italic. The text must be on the
same line as the macro call.

.IR text Causes text on the same line to appear alternately in italic and roman. The text must be on the
same line as the macro call.

.BR text

Causes text on the same line to appear alternately in bold face and roman. The text must be on
the same line as the macro call.

.RB text

Causes text on the same line to appear alternately in roman and bold face. The text must be on
the same line as the macro call.

.B [text]
Causes text to appear in bold face. If no text is present on the line where the macro is called
the text of the next input line appears in bold face.

.I [text] Causes text to appear in italic. If no text is present on the line where the macro is called the
text of the next input line appears in italic.

MACROS TO DESCRIBE HYPERLINKS AND EMAIL ADDRESSES
The following macros are not defined on legacy Unix systems running classic troff. To be certain your
page will be portable to those systems, copy their definitions from the an-ext.tmac file of a groff
installation.

Using these macros helps ensure that you get hyperlinks when your manual page is rendered in a
browser or other program that is Web-enabled.

.UR URL

.UE [punctuation]
Wrap a World Wide Web hyperlink. The argument to UR is the URL; thereafter, lines until
UE are collected and used as the link text. Any argument to the UE macro is pasted to the end
of the text. On a device that is not a browser,

this is a link to .UR http://\:randomsite.org/\:fubar some random site .UE , given as an
example

usually displays like this: “this is a link to some random site <http://randomsite.org/fubar>,
given as an example”.

The use of \: to insert hyphenless breakpoints is a groff extension and can be omitted.

.MT address

.ME [punctuation]
Wrap an email address. The argument of MT is the address; text following, until ME, is a
name to be associated with the address. Any argument to the ME macro is pasted to the end
of the link text. On a device that is not a browser,

contact .UR fred.foonly@\:fubar.net Fred Foonly .UE for more information

usually displays like this: “contact Fred Foonly <fred.foonly@fubar.net> for more informa-
tion”.

The use of \: to insert hyphenless breakpoints is a groff extension and can be omitted.

Groff Version 1.20 5 January 2009 4

GROFF_MAN(7) GROFF_MAN(7)

MACROS TO DESCRIBE COMMAND SYNOPSES
The following macros are not defined on legacy Unix systems running classic troff. To be certain your
page will be portable to those systems, copy their definitions from the an-ext.tmac file of a groff
installation.

These macros are a convenience for authors. They also assist automated translation tools and help
browsers in recognizing command synopses and treating them differently from running text.

.SY command

Begin synopsis. Takes a single argument, the name of a command. Te xt following, until
closed by YS, is set with a hanging indentation with the width of command plus a space. This
produces the traditional look of a Unix command synopsis.

.OP key value

Describe an optional command argument. The arguments of this macro are set surrounded by
option braces in the default Roman font; the first argument is printed with a bold face, while
the second argument is typeset as italic.

.YS This macro restores normal indentation at the end of a command synopsis.

Here is a real example:

.SY groff .OP \-abcegiklpstzCEGNRSUVXZ .OP \-d cs .OP \-f fam .OP \-F dir .OP \-I dir .OP
\-K arg .OP \-L arg .OP \-m name .OP \-M dir .OP \-n num .OP \-o list .OP \-P arg .OP \-r cn
.OP \-T dev .OP \-w name .OP \-W name .RI [file .IR .\|.\|.] .YS

produces the following output:

[−abcegiklpstzCEGNRSUVXZ] [−dcs] [−f fam] [−Fdir] [−Idir] [−Karg] [−Larg]
[−mname] [−Mdir] [−nnum] [−olist] [−Parg] [−rcn] [−Tdev] [−wname]
[−Wname] [file . . .]

If necessary, you might use br requests to control line breaking. You can insert plain text as well; this
looks like the traditional (unornamented) syntax for a required command argument or filename.

MISCELLANEOUS
The default indentation is 7.2n in troff mode and 7n in nroff mode except for grohtml which ignores
indentation.

.DT Set tabs every 0.5 inches. Since this macro is always called during a TH request, it makes
sense to call it only if the tab positions have been changed.

Use of this presentation-level macro is deprecated. It translates poorly to HTML, under which
exact whitespace control and tabbing are not readily available. Thus, information or distinc-
tions that you use DT to express are likely to be lost. If you feel tempted to use it, you should
probably be composing a table using tbl(@MAN1DIR@) markup instead.

.PD [nnn]
Adjust the empty space before a new paragraph or section. The optional argument gives the
amount of space (default unit is ‘v’); without parameter, the value is reset to its default value
(1 line in nroff mode, 0.4v otherwise). This affects the macros SH, SS, TP, LP (resp. PP and
P), IP, and HP.

Use of this presentation-level macro is deprecated. It translates poorly to HTML, under which
exact control of inter-paragraph spacing is not readily available. Thus, information or distinc-
tions that you use PD to express are likely to be lost.

.AT [system [release]]
Alter the footer for use with AT&T man pages. This command exists only for compatibility;
don’t use it. See the groff info manual for more.

.UC [version]
Alter the footer for use with BSD man pages. This command exists only for compatibility;
don’t use it. See the groff info manual for more.

.PT Print the header string. Redefine this macro to get control of the header.

.BT Print the footer string. Redefine this macro to get control of the footer.

The following strings are defined:

Groff Version 1.20 5 January 2009 5

GROFF_MAN(7) GROFF_MAN(7)

\∗S Switch back to the default font size.

\∗R The ‘registered’ sign.

\∗(Tm The ‘trademark’ sign.

\∗(lq
\∗(rq Left and right quote. This is equal to ‘\(lq’ and ‘\(rq’, respectively.

\∗(HF The typeface used to print headings and subheadings. The default is ‘B’.

If a preprocessor like tbl or eqn is needed, it has become usage to make the first line of the man page

look like this:

’\" word

Note the single space character after the double quote. word consists of letters for the needed pre-
processors: ‘e’ for eqn, ‘r’ for refer, and ‘t’ for tbl. Modern implementations of the man program read
this first line and automatically call the right preprocessor(s).

PORTABILITY AND TROFF REQUESTS
Since the man macros consist of groups of groff requests, one can, in principle, supplement the func-
tionality of the man macros with individual groff requests where necessary. See the groff info pages for
a complete reference of all requests.

Note, however, that using raw troff requests is likely to make your page render poorly on the (increas-
ingly common) class of viewers that render it to HTML. Troff requests make implicit assumptions
about things like character and page sizes that may break in an HTML environment; also, many of
these viewers don’t interpret the full troff vocabulary, a problem which can lead to portions of your text
being silently dropped.

For portability to modern viewers, it is best to write your page entirely in the requests described on this
page. Further, it is best to completely avoid those we have described as ‘presentation-level’ (HP, PD,
and DT).

The macros we have described as extensions (.EX/.EE, .SY/.OP/.YS, .UR/.UE, and .MT/.ME) should
be used with caution, as they may not yet be built in to some viewer that is important to your audience.
If in doubt, copy the implementation onto your page.

FILES
man.tmac
an.tmac

These are wrapper files to call andoc.tmac.

andoc.tmac
Use this file in case you don’t know whether the man macros or the mdoc package should be
used. Multiple man pages (in either format) can be handled.

an-old.tmac
Most man macros are contained in this file.

an-ext.tmac
The extension macro definitions for .SY, .OP, .YS, .TQ, .EX/.EE, .UR/.UE, and .MT/.ME
are contained in this file. It is written in classic troff, and released for free re-use, and not
copylefted; manual page authors concerned about portability to legacy Unix systems are
encouraged to copy these definitions into their pages, and maintainers of troff or its workalikes
are encouraged to re-use them.

man.local
Local changes and customizations should be put into this file.

SEE ALSO
tbl(1), eqn(1), refer(1), man(1), man(7), groff_mdoc(7)

AUTHORS
This manual page was originally written for the Debian GNU/Linux system by Susan G. Kleinmann It
was corrected and updated by Werner Lemberg The extension macros were documented (and partly
designed) by Eric S. Raymond he also wrote the portability advice. GROFF_MDOC

BSD January 5, 2006 6

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

BSD January 5, 2006 7

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

NAME
groff_mdoc — reference for groff’s mdoc implementation

SYNOPSIS
groff −mdoc file ...

DESCRIPTION
A complete reference for writing UNIX manual pages with the −mdoc macro package; a content-based
and domain-based formatting package for GNU troff(1). Its predecessor, the −man(7) package,
addressed page layout leaving the manipulation of fonts and other typesetting details to the individual
author. In −mdoc, page layout macros make up the page structure domain which consists of macros for
titles, section headers, displays and lists − essentially items which affect the physical position of text on a
formatted page. In addition to the page structure domain, there are two more domains, the manual

domain and the general text domain. The general text domain is defined as macros which perform tasks
such as quoting or emphasizing pieces of text. The manual domain is defined as macros that are a subset
of the day to day informal language used to describe commands, routines and related UNIX files. Macros
in the manual domain handle command names, command line arguments and options, function names,
function parameters, pathnames, variables, cross references to other manual pages, and so on. These
domain items have value for both the author and the future user of the manual page. Hopefully, the con-
sistency gained across the manual set will provide easier translation to future documentation tools.

Throughout the UNIX manual pages, a manual entry is simply referred to as a man page, regardless of
actual length and without sexist intention.

GETTING STARTED
The material presented in the remainder of this document is outlined as follows:

1. TROFF IDIOSYNCRASIES
Macro Usage
Passing Space Characters in an Argument
Trailing Blank Space Characters
Escaping Special Characters
Other Possible Pitfalls

2. A MANUAL PAGE TEMPLATE

3. CONVENTIONS

4. TITLE MACROS

5. INTRODUCTION OF MANUAL AND GENERAL TEXT DOMAINS
What’s in a Name . . .
General Syntax

6. MANUAL DOMAIN
Addresses
Author Name
Arguments
Configuration Declarations (Section Four Only)
Command Modifiers
Defined Variables
Errno’s
Environment Variables
Flags
Function Declarations
Function Types
Functions (Library Routines)

BSD January 5, 2006 8

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Function Arguments
Return Values
Exit Status
Interactive Commands
Library Names
Literals
Names
Options
Pathnames
Standards
Variable Types
Variables
Manual Page Cross References

7. GENERAL TEXT DOMAIN
AT&T Macro
BSD Macro
NetBSD Macro
FreeBSD Macro
DragonFly Macro
OpenBSD Macro
BSD/OS Macro
UNIX Macro
Emphasis Macro
Font Mode
Enclosure and Quoting Macros
No-Op or Normal Text Macro
No-Space Macro
Section Cross References
Symbolics
Mathematical Symbols
References and Citations
Trade Names (or Acronyms and Type Names)
Extended Arguments

8. PA GE STRUCTURE DOMAIN
Section Headers
Subsection Headers
Paragraphs and Line Spacing
Keeps
Examples and Displays
Lists and Columns

9. MISCELLANEOUS MACROS

10. PREDEFINED STRINGS

11. DIAGNOSTICS

12. FORMATTING WITH GROFF, TROFF, AND NROFF

13. FILES

14. SEE ALSO

15. BUGS

BSD January 5, 2006 9

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

TROFF IDIOSYNCRASIES
The −mdoc package attempts to simplify the process of writing a man page. Theoretically, one should
not have to learn the tricky details of GNU troff(1) to use −mdoc; howev er, there are a few limitations
which are unavoidable and best gotten out of the way. And, too, be forewarned, this package is not fast.

Macro Usage
As in GNU troff(1), a macro is called by placing a ‘.’ (dot character) at the beginning of a line fol-
lowed by the two-character (or three-character) name for the macro. There can be space or tab charac-
ters between the dot and the macro name. Arguments may follow the macro separated by spaces (but no

tabs). It is the dot character at the beginning of the line which causes GNU troff(1) to interpret the
next two (or more) characters as a macro name. A single starting dot followed by nothing is ignored. To
place a ‘.’ (dot character) at the beginning of an input line in some context other than a macro invoca-
tion, precede the ‘.’ (dot) with the ‘\&’ escape sequence which translates literally to a zero-width space,
and is never displayed in the output.

In general, GNU troff(1) macros accept an unlimited number of arguments (contrary to other versions
of troff which can’t handle more than nine arguments). In limited cases, arguments may be continued or
extended on the next line (See Extended Arguments below). Almost all macros handle quoted argu-
ments (see Passing Space Characters in an Argument below).

Most of the −mdoc general text domain and manual domain macros are special in that their argument
lists are parsed for callable macro names. This means an argument on the argument list which matches a
general text or manual domain macro name (and which is defined to be callable) will be executed or
called when it is processed. In this case the argument, although the name of a macro, is not preceded by
a ‘.’ (dot). This makes it possible to nest macros; for example the option macro, .Op, may call the flag
and argument macros, ‘Fl’ and ‘Ar’, to specify an optional flag with an argument:

[−s bytes] is produced by .Op Fl s Ar bytes

To prevent a string from being interpreted as a macro name, precede the string with the escape sequence
‘\&’:

[Fl s Ar bytes] is produced by .Op \&Fl s \&Ar bytes

Here the strings ‘Fl’ and ‘Ar’ are not interpreted as macros. Macros whose argument lists are parsed
for callable arguments are referred to as parsed and macros which may be called from an argument list
are referred to as callable throughout this document. This is a technical faux pas as almost all of the
macros in −mdoc are parsed, but as it was cumbersome to constantly refer to macros as being callable
and being able to call other macros, the term parsed has been used.

In the following, we call an −mdoc macro which starts a line (with a leading dot) a command if this dis-
tinction is necessary.

Passing Space Characters in an Argument
Sometimes it is desirable to give as an argument a string containing one or more blank space characters,
say, to specify arguments to commands which expect particular arrangement of items in the argument
list. Additionally, it makes −mdoc working faster. For example, the function command .Fn expects the
first argument to be the name of a function and any remaining arguments to be function parameters. As
ANSI C stipulates the declaration of function parameters in the parenthesized parameter list, each param-
eter is guaranteed to be at minimum a two word string. For example, int foo.

There are two possible ways to pass an argument which contains an embedded space. One way of pass-
ing a string containing blank spaces is to use the hard or unpaddable space character ‘\ ’, that is, a blank
space preceded by the escape character ‘\’. This method may be used with any macro but has the side
effect of interfering with the adjustment of text over the length of a line. Troff sees the hard space as if
it were any other printable character and cannot split the string into blank or newline separated pieces as
one would expect. This method is useful for strings which are not expected to overlap a line boundary.
An alternative is to use ‘\ ’, a paddable (i.e. stretchable), unbreakable space (this is a GNU troff(1)
extension). The second method is to enclose the string with double quotes.

BSD January 5, 2006 10

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

For example:

fetch(char ∗str) is created by .Fn fetch char\ ∗str

fetch(char ∗str) can also be created by .Fn fetch "char ∗str"

If the ‘\’ before the space in the first example or double quotes in the second example were omitted,
.Fn would see three arguments, and the result would be:

fetch(char , ∗str)

Trailing Blank Space Characters
Troff can be confused by blank space characters at the end of a line. It is a wise preventive measure to
globally remove all blank spaces from 〈blank-space〉〈end-of-line〉 character sequences. Should the need
arise to use a blank character at the end of a line, it may be forced with an unpaddable space and the ‘\&’
escape character. For example, string\ \&.

Escaping Special Characters
Special characters like the newline character ‘\n’ are handled by replacing the ‘\’ with ‘\e’ (e.g. \en)
to preserve the backslash.

Other Possible Pitfalls
A warning is emitted when an empty input line is found outside of displays (see below). Use .sp
instead. (Well, it is even better to use −mdoc macros to avoid the usage of low-level commands.)

Leading spaces will cause a break and are output directly. Avoid this behaviour if possible. Similarly,
do not use more than one space character between words in an ordinary text line; contrary to other text
formatters, they are not replaced with a single space.

You can’t pass ‘"’ directly as an argument. Use \∗[q] (or \∗q) instead.

By default, troff(1) inserts two space characters after a punctuation mark closing a sentence; charac-
ters like ‘)’ or ‘’’ are treated transparently, not influencing the sentence-ending behaviour. To change
this, insert ‘\&’ before or after the dot:

The
.Ql .
character.
.Pp
The
.Ql \&.
character.
.Pp
.No test .
test
.Pp
.No test.
test

gives

The ‘’. character

The ‘.’ character.

test. test

test. test

As can be seen in the first and third line, −mdoc handles punctuation characters specially in macro argu-
ments. This will be explained in section General Syntax below. In the same way, you have to protect
trailing full stops of abbreviations with a trailing zero-width space: e.g.\&.

BSD January 5, 2006 11

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

A comment in the source file of a man page can be either started with .\" on a single line, ‘\"’ after
some input, or ‘\#’ anywhere (the latter is a GNU troff(1) extension); the rest of such a line is
ignored.

A MANUAL PAGE TEMPLATE
The body of a man page is easily constructed from a basic template:

.\" The following commands are required for all man pages.

.Dd Month day, year

.Os [OPERATING_SYSTEM] [version/release]

.Dt DOCUMENT_TITLE [section number] [architecture/volume]

.Sh NAME

.Nm name

.Nd one line description of name

.\" This next command is for sections 2 and 3 only.

.\" .Sh LIBRARY

.Sh SYNOPSIS

.Sh DESCRIPTION

.\" The following commands should be uncommented and

.\" used where appropriate.

.\" .Sh IMPLEMENTATION NOTES

.\" This next command is for sections 2, 3 and 9 function

.\" return values only.

.\" .Sh RETURN VALUES

.\" This next command is for sections 1, 6, 7 and 8 only.

.\" .Sh ENVIRONMENT

.\" .Sh FILES

.\" .Sh EXAMPLES

.\" This next command is for sections 1, 6, 7, 8 and 9 only

.\" (command return values (to shell) and

.\" fprintf/stderr type diagnostics).

.\" .Sh DIAGNOSTICS

.\" .Sh COMPATIBILITY

.\" This next command is for sections 2, 3 and 9 error

.\" and signal handling only.

.\" .Sh ERRORS

.\" .Sh SEE ALSO

.\" .Sh STANDARDS

.\" .Sh HISTORY

.\" .Sh AUTHORS

.\" .Sh BUGS

The first items in the template are the commands .Dd, .Os, and .Dt; the document date, the operating
system the man page or subject source is developed or modified for, and the man page title (in upper

case) along with the section of the manual the page belongs in. These commands identify the page and
are discussed below in TITLE MACROS.

The remaining items in the template are section headers (.Sh); of which NAME, SYNOPSIS, and
DESCRIPTION are mandatory. The headers are discussed in PA GE STRUCTURE DOMAIN, after
presentation of MANUAL DOMAIN. Sev eral content macros are used to demonstrate page layout
macros; reading about content macros before page layout macros is recommended.

CONVENTIONS
In the description of all macros below, optional arguments are put into brackets. An ellipsis (‘ . . .’) rep-
resents zero or more additional arguments. Alternative values for a parameter are separated with ‘|’. If
there are alternative values for a mandatory parameter, braces are used (together with ‘|’) to enclose the
value set. Meta-variables are specified within angles.

BSD January 5, 2006 12

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Example:

.Xx 〈foo〉 {bar1 | bar2} [−test1 [−test2 | −test3]] . . .

Except stated explicitly, all macros are parsed and callable.

Note that a macro takes effect up to the next nested macro. For example, .Ic foo Aq bar doesn’t
produce ‘foo <bar>’ but ‘foo 〈bar〉’. Consequently, a warning message is emitted for most com-
mands if the first argument is a macro itself since it cancels the effect of the calling command com-
pletely. Another consequence is that quoting macros never insert literal quotes; ‘foo <bar>’ has been
produced by .Ic "foo <bar>".

Most macros have a default width value which can be used to specify a label width (−width) or offset
(−offset) for the .Bl and .Bd macros. It is recommended not to use this rather obscure feature to
avoid dependencies on local modifications of the −mdoc package.

TITLE MACROS
The title macros are part of the page structure domain but are presented first and separately for someone
who wishes to start writing a man page yesterday. Three header macros designate the document title or
manual page title, the operating system, and the date of authorship. These macros are called once at the
very beginning of the document and are used to construct headers and footers only.

.Dt [〈document title〉] [〈section number〉] [〈volume〉]
The document title is the subject of the man page and must be in CAPITALS due to troff limita-
tions. If omitted, ‘UNTITLED’ is used. The section number may be a number in the range
1, . . ., 9 or unass, draft, or paper. If it is specified, and no volume name is given, a
default volume name is used.

Under BSD, the following sections are defined:

1 BSD General Commands Manual
2 BSD System Calls Manual
3 BSD Library Functions Manual
4 BSD Kernel Interfaces Manual
5 BSD File Formats Manual
6 BSD Games Manual
7 BSD Miscellaneous Information Manual
8 BSD System Manager’s Manual
9 BSD Kernel Developer’s Manual

A volume name may be arbitrary or one of the following:

USD User’s Supplementary Documents
PS1 Programmer’s Supplementary Documents
AMD Ancestral Manual Documents
SMM System Manager’s Manual
URM User’s Reference Manual
PRM Programmer’s Manual
KM Kernel Manual
IND Manual Master Index
LOCAL Local Manual
CON Contributed Software Manual

For compatibility, MMI can be used for IND, and LOC for LOCAL. Values from the previous ta-
ble will specify a new volume name. If the third parameter is a keyword designating a computer
architecture, its value is prepended to the default volume name as specified by the second
parameter. By default, the following architecture keywords are defined:

alpha, acorn26, acorn32, algor, amd64, amiga, arc, arm26, arm32, atari, bebox, cats,
cesfic, cobalt, dreamcast, evbarm, evbmips, evbppc, evbsh3, hp300, hp700, hpcmips,
i386, luna68k, m68k, mac68k, macppc, mips, mmeye, mvme68k, mvmeppc, netwinder,
news68k, newsmips, next68k, ofppc, pc532, pmax, pmppc, powerpc, prep, sandpoint,

BSD January 5, 2006 13

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

sgimips, sh3, shark, sparc, sparc64, sun3, tahoe, vax, x68k, x86_64

If the section number is neither a numeric expression in the range 1 to 9 nor one of the above
described keywords, the third parameter is used verbatim as the volume name.

In the following examples, the left (which is identical to the right) and the middle part of the
manual page header strings are shown. Note how ‘\&’ prevents the digit 7 from being a valid
numeric expression.

.Dt FOO 7 FOO(7) BSD Miscellaneous Information Manual

.Dt FOO 7 bar FOO(7) BSD Miscellaneous Information Manual

.Dt FOO \&7 bar
FOO(7) bar

.Dt FOO 2 i386 FOO(2) BSD/i386 System Calls Manual

.Dt FOO "" bar FOO bar

Local, OS-specific additions might be found in the file mdoc.local; look for strings named
volume−ds−XXX (for the former type) and volume−as−XXX (for the latter type); XXX then
denotes the keyword to be used with the .Dt macro.

This macro is neither callable nor parsed.

.Os [〈operating system〉] [〈release〉]
If the first parameter is empty, the default ‘BSD’ is used. This may be overridden in the local
configuration file, mdoc.local. In general, the name of the operating system should be the
common acronym, e.g. BSD or ATT. The release should be the standard release nomenclature
for the system specified. In the following table, the possible second arguments for some prede-
fined operating systems are listed. Similar to .Dt, local additions might be defined in
mdoc.local; look for strings named operating−system−XXX−YYY, where XXX is the
acronym for the operating system and YYY the release ID.

ATT 7th, 7, III, 3, V, V.2, V.3, V.4

BSD 3, 4, 4.1, 4.2, 4.3, 4.3t, 4.3T, 4.3r, 4.3R, 4.4

NetBSD 0.8, 0.8a, 0.9, 0.9a, 1.0, 1.0a, 1.1, 1.2, 1.2a, 1.2b, 1.2c, 1.2d, 1.2e, 1.3, 1.3a,
1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1, 1.6.2, 1.6.3, 2.0,
2.0.1, 2.0.2, 2.0.3, 2.1, 3.0, 3.0.1, 3.0.2, 3.1, 4.0, 4.0.1

FreeBSD 1.0, 1.1, 1.1.5, 1.1.5.1, 2.0, 2.0.5, 2.1, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2,
2.2.5, 2.2.6, 2.2.7, 2.2.8, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0, 4.1, 4.1.1, 4.2, 4.3,
4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 4.9, 4.10, 4.11, 5.0, 5.1, 5.2, 5.2.1, 5.3, 5.4, 5.5,
6.0, 6.1, 6.2, 6.3, 6.4, 7.0, 7.1

DragonFly
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 1.8.1, 1.10, 1.12, 1.12.2, 2.0

Darwin 8.0.0, 8.1.0, 8.2.0, 8.3.0, 8.4.0, 8.5.0, 8.6.0, 8.7.0, 8.8.0, 8.9.0, 8.10.0, 8.11.0,
9.0.0, 9.1.0, 9.2.0, 9.3.0, 9.4.0, 9.5.0, 9.6.0

For ATT, an unknown second parameter will be replaced with the string UNIX; for the other pre-
defined acronyms it will be ignored and a warning message emitted. Unrecognized arguments
are displayed as given in the page footer. For instance, a typical footer might be:

.Os BSD 4.3

giving 4.3 Berkeley Distribution, or for a locally produced set

.Os CS Department

which will produce CS Department.

If the .Os macro is not present, the bottom left corner of the manual page will be ugly.

BSD January 5, 2006 14

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

This macro is neither callable nor parsed.

.Dd [〈month〉 〈day〉, 〈year〉]
If ‘Dd’ has no arguments, Epoch is used for the date string. If it has exactly three arguments,
they are concatenated, separated with unbreakable space:

.Dd January 25, 2001

The month’s name shall not be abbreviated.

With any other number of arguments, the current date is used, ignoring the parameters.

This macro is neither callable nor parsed.

INTRODUCTION OF MANUAL AND GENERAL TEXT DOMAINS
What’s in a Name . . .

The manual domain macro names are derived from the day to day informal language used to describe
commands, subroutines and related files. Slightly different variations of this language are used to
describe the three different aspects of writing a man page. First, there is the description of −mdoc
macro command usage. Second is the description of a UNIX command with −mdoc macros, and third,
the description of a command to a user in the verbal sense; that is, discussion of a command in the text of
a man page.

In the first case, troff(1) macros are themselves a type of command; the general syntax for a troff
command is:

.Xx argument1 argument2 ...

.Xx is a macro command, and anything following it are arguments to be processed. In the second case,
the description of a UNIX command using the content macros is a bit more involved; a typical
SYNOPSIS command line might be displayed as:

filter [−flag] 〈infile〉 〈outfile〉

Here, filter is the command name and the bracketed string −flag is a flag argument designated as
optional by the option brackets. In −mdoc terms, 〈infile〉 and 〈outfile〉 are called meta

arguments; in this example, the user has to replace the meta expressions given in angle brackets with real
file names. Note that in this document meta arguments are used to describe −mdoc commands; in most
man pages, meta variables are not specifically written with angle brackets. The macros which formatted
the above example:

.Nm filter

.Op Fl flag

.Ao Ar infile Ac Ao Ar outfile Ac

In the third case, discussion of commands and command syntax includes both examples above, but may
add more detail. The arguments 〈infile〉 and 〈outfile〉 from the example above might be referred
to as operands or file arguments. Some command line argument lists are quite long:

make [−eiknqrstv] [−D variable] [−d flags] [−f makefile] [−I
directory] [−j max_jobs] [variable=value] [target ...]

Here one might talk about the command make and qualify the argument, makefile, as an argument to
the flag, −f, or discuss the optional file operand target. In the verbal context, such detail can prevent
confusion, however the −mdoc package does not have a macro for an argument to a flag. Instead the
‘Ar’ argument macro is used for an operand or file argument like target as well as an argument to a
flag like variable. The make command line was produced from:

.Nm make

.Op Fl eiknqrstv

.Op Fl D Ar variable

.Op Fl d Ar flags

.Op Fl f Ar makefile

.Op Fl I Ar directory

BSD January 5, 2006 15

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Op Fl j Ar max_jobs

.Op Ar variable Ns = Ns Ar value

.Bk

.Op Ar target ...

.Ek

The .Bk and .Ek macros are explained in Keeps.

General Syntax
The manual domain and general text domain macros share a similar syntax with a few minor deviations;
most notably, .Ar, .Fl, .Nm, and .Pa differ only when called without arguments; and .Fn and .Xr
impose an order on their argument lists. All content macros are capable of recognizing and properly
handling punctuation, provided each punctuation character is separated by a leading space. If a com-
mand is given:

.Ar sptr, ptr),

The result is:

sptr, ptr),

The punctuation is not recognized and all is output in the font used by .Ar. If the punctuation is sepa-
rated by a leading white space:

.Ar sptr , ptr) ,

The result is:

sptr, ptr),

The punctuation is now recognized and output in the default font distinguishing it from the argument
strings. To remove the special meaning from a punctuation character escape it with ‘\&’.

The following punctuation characters are recognized by −mdoc:

. , : ; (
) [] ? !

Troff is limited as a macro language, and has difficulty when presented with a string containing a
member of the mathematical, logical or quotation set:

{+,−,/,∗,%,<,>,<=,>=,=,==,&,‘,’,"}

The problem is that troff may assume it is supposed to actually perform the operation or evaluation
suggested by the characters. To prevent the accidental evaluation of these characters, escape them with
‘\&’. Typical syntax is shown in the first content macro displayed below, .Ad.

MANUAL DOMAIN
Addresses

The address macro identifies an address construct.

Usage: .Ad 〈address〉 . . .

.Ad addr1 addr1

.Ad addr1 . addr1.

.Ad addr1 , file2 addr1, file2

.Ad f1 , f2 , f3 : f1, f2, f3:

.Ad addr)) , addr)),

The default width is 12n.

Author Name
The .An macro is used to specify the name of the author of the item being documented, or the name of
the author of the actual manual page.

BSD January 5, 2006 16

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Usage: .An 〈author name〉 . . .

.An "Joe Author" Joe Author

.An "Joe Author" , Joe Author,

.An "Joe Author" Aq nobody@FreeBSD.org
Joe Author 〈nobody@FreeBSD.org〉

.An "Joe Author")) , Joe Author)),

The default width is 12n.

In the AUTHORS section, the .An command causes a line break allowing each new name to appear on
its own line. If this is not desirable,

.An −nosplit

call will turn this off. To turn splitting back on, write

.An −split

Arguments
The .Ar argument macro may be used whenever an argument is referenced. If called without argu-
ments, the ‘file ...’ string is output.

Usage: .Ar [〈argument〉] . . .

.Ar file ...

.Ar file1 file1

.Ar file1 . file1.

.Ar file1 file2 file1 file2

.Ar f1 f2 f3 : f1 f2 f3:

.Ar file)) , file)),

The default width is 12n.

Configuration Declaration (Section Four Only)
The .Cd macro is used to demonstrate a config(8) declaration for a device interface in a section four
manual.

Usage: .Cd 〈argument〉 . . .

.Cd "device le0 at scode?" device le0 at scode?

In the SYNOPSIS section a .Cd command causes a line break before and after its arguments are
printed.

The default width is 12n.

Command Modifiers
The command modifier is identical to the .Fl (flag) command with the exception that the .Cm macro
does not assert a dash in front of every argument. Traditionally flags are marked by the preceding dash,
however, some commands or subsets of commands do not use them. Command modifiers may also be
specified in conjunction with interactive commands such as editor commands. See Flags.

The default width is 10n.

Defined Variables
A variable (or constant) which is defined in an include file is specified by the macro .Dv.

Usage: .Dv 〈defined variable〉 . . .

BSD January 5, 2006 17

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Dv MAXHOSTNAMELEN MAXHOSTNAMELEN

.Dv TIOCGPGRP) TIOCGPGRP)

The default width is 12n.

Errno’s
The .Er errno macro specifies the error return value for section 2, 3, and 9 library routines. The second
example below shows .Er used with the .Bq general text domain macro, as it would be used in a sec-
tion two manual page.

Usage: .Er 〈errno type〉 . . .

.Er ENOENT ENOENT

.Er ENOENT) ; ENOENT);

.Bq Er ENOTDIR [ENOTDIR]

The default width is 17n.

Environment Variables
The .Ev macro specifies an environment variable.

Usage: .Ev 〈argument〉 . . .

.Ev DISPLAY DISPLAY

.Ev PATH . PATH.

.Ev PRINTER)) , PRINTER)),

The default width is 15n.

Flags
The .Fl macro handles command line flags. It prepends a dash, ‘−’, to the flag. For interactive com-
mand flags, which are not prepended with a dash, the .Cm (command modifier) macro is identical, but
without the dash.

Usage: .Fl 〈argument〉 . . .

.Fl −

.Fl cfv −cfv

.Fl cfv . −cfv.

.Cm cfv . cfv.

.Fl s v t −s −v −t

.Fl − , −−,

.Fl xyz) , −xyz),

.Fl | − |

The .Fl macro without any arguments results in a dash representing stdin/stdout. Note that giving .Fl
a single dash will result in two dashes.

The default width is 12n.

Function Declarations
The .Fd macro is used in the SYNOPSIS section with section two or three functions. It is neither
callable nor parsed.

Usage: .Fd 〈argument〉 . . .

.Fd "#include <sys/types.h>" #include <sys/types.h>

In the SYNOPSIS section a .Fd command causes a line break if a function has already been presented
and a break has not occurred. This leaves a nice vertical space in between the previous function call and
the declaration for the next function.

BSD January 5, 2006 18

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

The .In macro, while in the SYNOPSIS section, represents the #include statement, and is the short
form of the above example. It specifies the C header file as being included in a C program. It also
causes a line break.

While not in the SYNOPSIS section, it represents the header file enclosed in angle brackets.

Usage: .In 〈header file〉

.In stdio.h #include <stdio.h>

.In stdio.h <stdio.h>

Function Types
This macro is intended for the SYNOPSIS section. It may be used anywhere else in the man page with-
out problems, but its main purpose is to present the function type in kernel normal form for the
SYNOPSIS of sections two and three (it causes a line break, allowing the function name to appear on
the next line).

Usage: .Ft 〈type〉 . . .

.Ft struct stat struct stat

Functions (Library Routines)
The .Fn macro is modeled on ANSI C conventions.

Usage: .Fn 〈function〉 [〈parameter〉] . . .

.Fn getchar getchar()

.Fn strlen) , strlen()),

.Fn align "char ∗ptr" , align(char ∗ptr),

Note that any call to another macro signals the end of the .Fn call (it will insert a closing parenthesis at
that point).

For functions with many parameters (which is rare), the macros .Fo (function open) and .Fc (function
close) may be used with .Fa (function argument).

Example:

.Ft int

.Fo res_mkquery

.Fa "int op"

.Fa "char ∗dname"

.Fa "int class"

.Fa "int type"

.Fa "char ∗data"

.Fa "int datalen"

.Fa "struct rrec ∗newrr"

.Fa "char ∗buf"

.Fa "int buflen"

.Fc

Produces:

int res_mkquery(int op , char ∗dname , int class , int type , char ∗data ,
int datalen , struct rrec ∗newrr , char ∗buf , int buflen)

In the SYNOPSIS section, the function will always begin at the beginning of line. If there is more than
one function presented in the SYNOPSIS section and a function type has not been given, a line break
will occur, leaving a nice vertical space between the current function name and the one prior.

The default width values of .Fn and .Fo are 12n and 16n, respectively.

BSD January 5, 2006 19

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Function Arguments
The .Fa macro is used to refer to function arguments (parameters) outside of the SYNOPSIS section of
the manual or inside the SYNOPSIS section if the enclosure macros .Fo and .Fc instead of .Fn are
used. .Fa may also be used to refer to structure members.

Usage: .Fa 〈function argument〉 . . .

.Fa d_namlen)) , d_namlen)),

.Fa iov_len iov_len

The default width is 12n.

Return Values
The .Rv macro generates text for use in the RETURN VALUES section.

Usage: .Rv [−std] [〈function〉 . . .]

For example, .Rv −std atexit produces:

The atexit() function returns the value 0 if successful; otherwise the value −1 is returned
and the global variable errno is set to indicate the error.

The −std option is valid only for manual page sections 2 and 3. Currently, this macro does nothing if
used without the −std flag.

Exit Status
The .Ex macro generates text for use in the DIAGNOSTICS section.

Usage: .Ex [−std] [〈utility〉 . . .]

For example, .Ex −std cat produces:

The cat utility exits 0 on success, and >0 if an error occurs.

The −std option is valid only for manual page sections 1, 6 and 8. Currently, this macro does nothing
if used without the −std flag.

Interactive Commands
The .Ic macro designates an interactive or internal command.

Usage: .Ic 〈argument〉 . . .

.Ic :wq :wq

.Ic "do while {...}" do while {...}

.Ic setenv , unsetenv setenv, unsetenv

The default width is 12n.

Library Names
The .Lb macro is used to specify the library where a particular function is compiled in.

Usage: .Lb 〈argument〉 . . .

Av ailable arguments to .Lb and their results are:

libarm ARM Architecture Library (libarm, −larm)
libarm32 ARM32 Architecture Library (libarm32, −larm32)
libc Standard C Library (libc, −lc)
libcdk Curses Development Kit Library (libcdk, −lcdk)
libcompat Compatibility Library (libcompat, −lcompat)
libcrypt Crypt Library (libcrypt, −lcrypt)
libcurses Curses Library (libcurses, −lcurses)

BSD January 5, 2006 20

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

libedit Command Line Editor Library (libedit, −ledit)
libevent Event Notification Library (libevent, −levent)
libform Curses Form Library (libform, −lform)
libi386 i386 Architecture Library (libi386, −li386)
libintl Internationalized Message Handling Library (libintl, −lintl)
libipsec IPsec Policy Control Library (libipsec, −lipsec)
libkvm Kernel Data Access Library (libkvm, −lkvm)
libm Math Library (libm, −lm)
libm68k m68k Architecture Library (libm68k, −lm68k)
libmagic Magic Number Recognition Library (libmagic, −lmagic)
libmenu Curses Menu Library (libmenu, −lmenu)
libossaudio OSS Audio Emulation Library (libossaudio, −lossaudio)
libpam Pluggable Authentication Module Library (libpam, −lpam)
libpcap Packet Capture Library (libpcap, −lpcap)
libpci PCI Bus Access Library (libpci, −lpci)
libpmc Performance Counters Library (libpmc, −lpmc)
libposix POSIX Compatibility Library (libposix, −lposix)
libpthread POSIX Threads Library (libpthread, −lpthread)
libresolv DNS Resolver Library (libresolv, −lresolv)
librt POSIX Real-time Library (librt, −lrt)
libtermcap Termcap Access Library (libtermcap, −ltermcap)
libusbhid USB Human Interface Devices Library (libusbhid, −lusbhid)
libutil System Utilities Library (libutil, −lutil)
libx86_64 x86_64 Architecture Library (libx86_64, −lx86_64)
libz Compression Library (libz, −lz)

Local, OS-specific additions might be found in the file mdoc.local; look for strings named
str−Lb−XXX. XXX then denotes the keyword to be used with the .Lb macro.

In the LIBRARY section an .Lb command causes a line break before and after its arguments are
printed.

Literals
The .Li literal macro may be used for special characters, variable constants, etc. − anything which
should be displayed as it would be typed.

Usage: .Li 〈argument〉 . . .

.Li \en \n

.Li M1 M2 M3 ; M1 M2 M3;

.Li cntrl−D) , cntrl-D),

.Li 1024 ... 1024 ...

The default width is 16n.

Names
The .Nm macro is used for the document title or subject name. It has the peculiarity of remembering the
first argument it was called with, which should always be the subject name of the page. When called
without arguments, .Nm regurgitates this initial name for the sole purpose of making less work for the
author. Note: A section two or three document function name is addressed with the .Nm in the NAME
section, and with .Fn in the SYNOPSIS and remaining sections. For interactive commands, such as the
while command keyword in csh(1), the .Ic macro should be used. While .Ic is nearly identical to
.Nm, it can not recall the first argument it was invoked with.

Usage: .Nm [〈argument〉] . . .

.Nm groff_mdoc groff_mdoc

BSD January 5, 2006 21

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Nm \−mdoc −mdoc

.Nm foo)) , foo)),

.Nm : groff_mdoc:

The default width is 10n.

Options
The .Op macro places option brackets around any remaining arguments on the command line, and
places any trailing punctuation outside the brackets. The macros .Oo and .Oc (which produce an open-
ing and a closing option bracket respectively) may be used across one or more lines or to specify the
exact position of the closing parenthesis.

Usage: .Op [〈option〉] . . .

.Op []

.Op Fl k [−k]

.Op Fl k) . [−k]).

.Op Fl k Ar kookfile [−k kookfile]

.Op Fl k Ar kookfile , [−k kookfile],

.Op Ar objfil Op Ar corfil [objfil [corfil]]

.Op Fl c Ar objfil Op Ar corfil , [−c objfil [corfil]],

.Op word1 word2 [word1 word2]

.Li .Op Oo Ao option Ac OcOp [〈option〉] . . .

Here a typical example of the .Oo and .Oc macros:

.Oo

.Op Fl k Ar kilobytes

.Op Fl i Ar interval

.Op Fl c Ar count

.Oc

Produces:

[[−k kilobytes] [−i interval] [−c count]]

The default width values of .Op and .Oo are 14n and 10n, respectively.

Pathnames
The .Pa macro formats path or file names. If called without arguments, the ‘ ’ string is output, which
represents the current user’s home directory.

Usage: .Pa [〈pathname〉] . . .

.Pa

.Pa /usr/share /usr/share

.Pa /tmp/fooXXXXX) . /tmp/fooXXXXX).

The default width is 32n.

Standards
The .St macro replaces standard abbreviations with their formal names.

Usage: .St 〈abbreviation〉 . . .

Av ailable pairs for “Abbreviation/Formal Name” are:

ANSI/ISO C

−ansiC ANSI X3.159-1989 (“ANSI C89”)
−ansiC−89 ANSI X3.159-1989 (“ANSI C89”)

BSD January 5, 2006 22

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

−isoC ISO/IEC 9899:1990 (“ISO C90”)
−isoC−90 ISO/IEC 9899:1990 (“ISO C90”)
−isoC−99 ISO/IEC 9899:1999 (“ISO C99”)

POSIX Part 1: System API

−iso9945−1−90 ISO/IEC 9945-1:1990 (“POSIX.1”)
−iso9945−1−96 ISO/IEC 9945-1:1996 (“POSIX.1”)
−p1003.1 IEEE Std 1003.1 (“POSIX.1”)
−p1003.1−88 IEEE Std 1003.1-1988 (“POSIX.1”)
−p1003.1−90 ISO/IEC 9945-1:1990 (“POSIX.1”)
−p1003.1−96 ISO/IEC 9945-1:1996 (“POSIX.1”)
−p1003.1b−93 IEEE Std 1003.1b-1993 (“POSIX.1”)
−p1003.1c−95 IEEE Std 1003.1c-1995 (“POSIX.1”)
−p1003.1g−2000 IEEE Std 1003.1g-2000 (“POSIX.1”)
−p1003.1i−95 IEEE Std 1003.1i-1995 (“POSIX.1”)
−p1003.1−2001 IEEE Std 1003.1-2001 (“POSIX.1”)
−p1003.1−2004 IEEE Std 1003.1-2004 (“POSIX.1”)

POSIX Part 2: Shell and Utilities

−iso9945−2−93 ISO/IEC 9945-2:1993 (“POSIX.2”)
−p1003.2 IEEE Std 1003.2 (“POSIX.2”)
−p1003.2−92 IEEE Std 1003.2-1992 (“POSIX.2”)
−p1003.2a−92 IEEE Std 1003.2a-1992 (“POSIX.2”)

X/Open

−susv2 Version 2 of the Single UNIX Specification (“SUSv2”)
−susv3
−svid4 System V Interface Definition, Fourth Edition (“SVID4”)
−xbd5 X/Open System Interface Definitions Issue 5 (“XBD5”)
−xcu5 X/Open Commands and Utilities Issue 5 (“XCU5”)
−xcurses4.2 X/Open Curses Issue 4, Version 2 (“XCURSES4.2”)
−xns5 X/Open Networking Services Issue 5 (“XNS5”)
−xns5.2 X/Open Networking Services Issue 5.2 (“XNS5.2”)
−xpg3 X/Open Portability Guide Issue 3 (“XPG3”)
−xpg4 X/Open Portability Guide Issue 4 (“XPG4”)
−xpg4.2 X/Open Portability Guide Issue 4, Version 2 (“XPG4.2”)
−xsh5 X/Open System Interfaces and Headers Issue 5 (“XSH5”)

Miscellaneous

−ieee754 IEEE Std 754-1985
−iso8802−3 ISO/IEC 8802-3:1989

Variable Types
The .Vt macro may be used whenever a type is referenced. In the SYNOPSIS section, it causes a line
break (useful for old style variable declarations).

Usage: .Vt 〈type〉 . . .

.Vt extern char ∗optarg ; extern char ∗optarg;

.Vt FILE ∗ FILE ∗

Variables
Generic variable reference.

Usage: .Va 〈variable〉 . . .

BSD January 5, 2006 23

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Va count count

.Va settimer , settimer,

.Va "int ∗prt") : int ∗prt):

.Va "char s"])) , char s])),

The default width is 12n.

Manual Page Cross References
The .Xr macro expects the first argument to be a manual page name. The optional second argument, if
a string (defining the manual section), is put into parentheses.

Usage: .Xr 〈man page name〉 [〈section〉] . . .

.Xr mdoc mdoc

.Xr mdoc , mdoc,

.Xr mdoc 7 mdoc(7)

.Xr xinit 1x ; xinit(1x);

The default width is 10n.

GENERAL TEXT DOMAIN
AT&T Macro

Usage: .At [〈version〉] . . .

.At AT&T UNIX

.At v6 . Version 6 AT&T UNIX.

The following values for 〈version〉 are possible:

32v, v1, v2, v3, v4, v5, v6, v7, V, V.1, V.2, V.3, V.4

BSD Macro
Usage: .Bx {−alpha | −beta | −devel} . . .

.Bx [〈version〉 [〈release〉]] . . .

.Bx BSD

.Bx 4.3 . 4.3BSD.

.Bx −devel BSD (currently under development)

〈version〉 will be prepended to the string ‘BSD’. The following values for 〈release〉 are possible:

Reno, reno, Tahoe, tahoe, Lite, lite, Lite2, lite2

NetBSD Macro
Usage: .Nx [〈version〉] . . .

.Nx NetBSD

.Nx 1.4 . NetBSD 1.4.

For possible values of 〈version〉 see the description of the .Os command above in section TITLE
MACROS.

FreeBSD Macro
Usage: .Fx [〈version〉] . . .

.Fx FreeBSD

.Fx 2.2 . FreeBSD 2.2.

For possible values of 〈version〉 see the description of the .Os command above in section TITLE
MACROS.

BSD January 5, 2006 24

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

DragonFly Macro
Usage: .Dx [〈version〉] . . .

.Dx

.Dx 1.4 .

For possible values of 〈version〉 see the description of the .Os command above in section TITLE
MACROS.

OpenBSD Macro
Usage: .Ox [〈version〉] . . .

.Ox 1.0 OpenBSD 1.0

BSD/OS Macro
Usage: .Bsx [〈version〉] . . .

.Bsx 1.0 BSD/OS 1.0

UNIX Macro
Usage: .Ux ...

.Ux UNIX

Emphasis Macro
Te xt may be stressed or emphasized with the .Em macro. The usual font for emphasis is italic.

Usage: .Em 〈argument〉 . . .

.Em does not does not

.Em exceed 1024 . exceed 1024.

.Em vide infra)) , vide infra)),

The default width is 10n.

Font Mode
The .Bf font mode must be ended with the .Ef macro (the latter takes no arguments). Font modes may
be nested within other font modes.

.Bf has the following syntax:

.Bf 〈font mode〉

〈font mode〉 must be one of the following three types:

Em | −emphasis Same as if the .Em macro was used for the entire block of text.
Li | −literal Same as if the .Li macro was used for the entire block of text.
Sy | −symbolic Same as if the .Sy macro was used for the entire block of text.

Both macros are neither callable nor parsed.

Enclosure and Quoting Macros
The concept of enclosure is similar to quoting. The object being to enclose one or more strings between
a pair of characters like quotes or parentheses. The terms quoting and enclosure are used interchange-
ably throughout this document. Most of the one-line enclosure macros end in small letter ‘q’ to giv e a
hint of quoting, but there are a few irregularities. For each enclosure macro there is also a pair of open
and close macros which end in small letters ‘o’ and ‘c’ respectively.

BSD January 5, 2006 25

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Quote Open Close Function Result

.Aq .Ao .Ac Angle Bracket Enclosure 〈string〉

.Bq .Bo .Bc Bracket Enclosure [string]

.Brq .Bro .Brc Brace Enclosure {string}

.Dq .Do .Dc Double Quote “string”

.Eq .Eo .Ec Enclose String (in XX) XXstringXX

.Pq .Po .Pc Parenthesis Enclosure (string)

.Ql Quoted Literal ‘string’ or string

.Qq .Qo .Qc Straight Double Quote "string"

.Sq .So .Sc Single Quote ‘string’

All macros ending with ‘q’ and ‘o’ have a default width value of 12n.

.Eo, .Ec These macros expect the first argument to be the opening and closing strings respectively.

.Es, .En Due to the nine-argument limit in the original troff program two other macros have been
implemented which are now rather obsolete: .Es takes the first and second parameter as
the left and right enclosure string, which are then used to enclose the arguments of .En.
The default width value is 12n for both macros.

.Eq The first and second arguments of this macro are the opening and closing strings respec-
tively, followed by the arguments to be enclosed.

.Ql The quoted literal macro behaves differently in troff and nroff mode. If formatted with
nroff, a quoted literal is always quoted. If formatted with troff, an item is only quoted if
the width of the item is less than three constant width characters. This is to make short
strings more visible where the font change to literal (constant width) is less noticeable.

The default width is 16n.

.Pf The prefix macro suppresses the whitespace between its first and second argument:

.Pf (Fa name2 (name2

The default width is 12n.

The .Ns macro (see below) performs the analogous suffix function.

.Ap The .Ap macro inserts an apostrophe and exits any special text modes, continuing in .No
mode.

Examples of quoting:

.Aq 〈〉

.Aq Pa ctype.h) , 〈ctype.h〉),

.Bq []

.Bq Em Greek , French . [Greek, Fr ench].

.Dq “”

.Dq string abc . “string abc”.

.Dq ´ˆ[A−Z]´ “´ˆ[A-Z]´”

.Ql man mdoc man mdoc

.Qq ""

.Qq string) , "string"),

.Qq string Ns), "string),"

.Sq ‘’

.Sq string ‘string’

.Em or Ap ing or’ing

For a good example of nested enclosure macros, see the .Op option macro. It was created from the
same underlying enclosure macros as those presented in the list above. The .Xo and .Xc extended
argument list macros are discussed below.

BSD January 5, 2006 26

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

No-Op or Normal Text Macro
The .No macro can be used in a macro command line for parameters which should not be formatted. Be
careful to add ‘\&’ to the word ‘No’ if you really want that English word (and not the macro) as a
parameter.

Usage: .No 〈argument〉 . . .

.No test Ta with Ta tabs test with tabs

The default width is 12n.

No-Space Macro
The .Ns macro suppresses insertion of a space between the current position and its first parameter. For
example, it is useful for old style argument lists where there is no space between the flag and argument:

Usage: ... 〈argument〉 Ns [〈argument〉] . . .
.Ns 〈argument〉 . . .

.Op Fl I Ns Ar directory [−Idirectory]

Note: The .Ns macro always invokes the .No macro after eliminating the space unless another macro
name follows it. If used as a command (i.e., the second form above in the ‘Usage’ line), .Ns is identical
to .No.

Section Cross References
The .Sx macro designates a reference to a section header within the same document.

Usage: .Sx 〈section reference〉 . . .

.Sx FILES FILES

The default width is 16n.

Symbolics
The symbolic emphasis macro is generally a boldface macro in either the symbolic sense or the tradi-
tional English usage.

Usage: .Sy 〈symbol〉 . . .

.Sy Important Notice Important Notice

The default width is 6n.

Mathematical Symbols
Use this macro for mathematical symbols and similar things.

Usage: .Ms 〈math symbol〉 . . .

.Ms sigma sigma

The default width is 6n.

References and Citations
The following macros make a modest attempt to handle references. At best, the macros make it con-
venient to manually drop in a subset of refer(1) style references.

.Rs Reference start (does not take arguments). Causes a line break in the SEE ALSO sec-
tion and begins collection of reference information until the reference end macro is read.

.Re Reference end (does not take arguments). The reference is printed.

.%A Reference author name; one name per invocation.

.%B Book title.

BSD January 5, 2006 27

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.%C City/place (not implemented yet).

.%D Date.

.%I Issuer/publisher name.

.%J Journal name.

.%N Issue number.

.%O Optional information.

.%P Page number.

.%Q Corporate or foreign author.

.%R Report name.

.%T Title of article.

.%V Volume.

Macros beginning with ‘%’ are not callable but accept multiple arguments in the usual way. Only the
.Tn macro is handled properly as a parameter; other macros will cause strange output. .%B and .%T
can be used outside of the .Rs/.Re environment.

Example:

.Rs

.%A "Matthew Bar"

.%A "John Foo"

.%T "Implementation Notes on foobar(1)"

.%R "Technical Report ABC−DE−12−345"

.%Q "Drofnats College, Nowhere"

.%D "April 1991"

.Re

produces

Matthew Bar and John Foo, Implementation Notes on foobar(1), Technical Report ABC-
DE-12-345, Drofnats College, Nowhere, April 1991.

Trade Names (or Acronyms and Type Names)
The trade name macro prints its arguments in a smaller font. Its intended use is to imitate a small caps
fonts for uppercase acronyms.

Usage: .Tn 〈symbol〉 . . .

.Tn DEC DEC

.Tn ASCII ASCII

The default width is 10n.

Extended Arguments
The .Xo and .Xc macros allow one to extend an argument list on a macro boundary for the .It macro
(see below). Note that .Xo and .Xc are implemented similarly to all other macros opening and closing
an enclosure (without inserting characters, of course). This means that the following is true for those
macros also.

Here is an example of .Xo using the space mode macro to turn spacing off:

.Sm off

.It Xo Sy I Ar operation

.No \en Ar count No \en

.Xc

.Sm on

produces

BSD January 5, 2006 28

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Ioperation\ncount\n

Another one:

.Sm off

.It Cm S No / Ar old_pattern Xo

.No / Ar new_pattern

.No / Op Cm g

.Xc

.Sm on

produces

S/old_pattern/new_pattern/[g]

Another example of .Xo and enclosure macros: Test the value of a variable.

.It Xo

.Ic .ifndef

.Oo \&! Oc Ns Ar variable Oo

.Ar operator variable ...

.Oc Xc

produces

.ifndef [!]variable [operator variable ...]

PA GE STRUCTURE DOMAIN
Section Headers

The following .Sh section header macros are required in every man page. The remaining section head-
ers are recommended at the discretion of the author writing the manual page. The .Sh macro is parsed
but not generally callable. It can be used as an argument in a call to .Sh only; it then reactivates the
default font for .Sh.

The default width is 8n.

.Sh NAME The .Sh NAME macro is mandatory. If not specified, headers, footers and
page layout defaults will not be set and things will be rather unpleasant. The
NAME section consists of at least three items. The first is the .Nm name
macro naming the subject of the man page. The second is the name descrip-
tion macro, .Nd, which separates the subject name from the third item, which
is the description. The description should be the most terse and lucid possi-
ble, as the space available is small.

.Nd first prints ‘−’, then all its arguments.

.Sh LIBRARY This section is for section two and three function calls. It should consist of a
single .Lb macro call; see Library Names.

.Sh SYNOPSIS The SYNOPSIS section describes the typical usage of the subject of a man
page. The macros required are either .Nm, .Cd, or .Fn (and possibly .Fo,
.Fc, .Fd, and .Ft). The function name macro .Fn is required for manual
page sections 2 and 3; the command and general name macro .Nm is required
for sections 1, 5, 6, 7, and 8. Section 4 manuals require a .Nm, .Fd or a .Cd
configuration device usage macro. Several other macros may be necessary to
produce the synopsis line as shown below:

cat [−benstuv] [−] file ...

The following macros were used:

.Nm cat

.Op Fl benstuv

.Op Fl

.Ar

BSD January 5, 2006 29

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Sh DESCRIPTION In most cases the first text in the DESCRIPTION section is a brief paragraph
on the command, function or file, followed by a lexical list of options and
respective explanations. To create such a list, the .Bl (begin list), .It (list
item) and .El (end list) macros are used (see Lists and Columns below).

.Sh IMPLEMENTATION NOTES
Implementation specific information should be placed here.

.Sh RETURN VALUES Sections 2, 3 and 9 function return values should go here. The .Rv macro
may be used to generate text for use in the RETURN VALUES section for
most section 2 and 3 library functions; see Return Values.

The following .Sh section headers are part of the preferred manual page layout and must be used appro-
priately to maintain consistency. They are listed in the order in which they would be used.

.Sh ENVIRONMENT The ENVIRONMENT section should reveal any related environment vari-
ables and clues to their behavior and/or usage.

.Sh FILES Files which are used or created by the man page subject should be listed via
the .Pa macro in the FILES section.

.Sh EXAMPLES There are several ways to create examples. See the EXAMPLES section
below for details.

.Sh DIAGNOSTICS Diagnostic messages from a command should be placed in this section. The
.Ex macro may be used to generate text for use in the DIAGNOSTICS sec-
tion for most section 1, 6 and 8 commands; see Exit Status.

.Sh COMPATIBILITY Known compatibility issues (e.g. deprecated options or parameters) should be
listed here.

.Sh ERRORS Specific error handling, especially from library functions (man page sections
2, 3, and 9) should go here. The .Er macro is used to specify an error
(errno).

.Sh SEE ALSO References to other material on the man page topic and cross references to
other relevant man pages should be placed in the SEE ALSO section. Cross
references are specified using the .Xr macro. Currently refer(1) style ref-
erences are not accommodated.

It is recommended that the cross references are sorted on the section number,
then alphabetically on the names within a section, and placed in that order and
comma separated. Example:

ls(1), ps(1), group(5), passwd(5)

.Sh STANDARDS If the command, library function or file adheres to a specific implementation
such as IEEE Std 1003.2 (“POSIX.2”) or ANSI X3.159-1989 (“ANSI C89”) this
should be noted here. If the command does not adhere to any standard, its
history should be noted in the HISTORY section.

.Sh HISTORY Any command which does not adhere to any specific standards should be out-
lined historically in this section.

.Sh AUTHORS Credits should be placed here. Use the .An macro for names and the .Aq
macro for e-mail addresses within optional contact information. Explicitly
indicate whether the person authored the initial manual page or the software
or whatever the person is being credited for.

.Sh BUGS Blatant problems with the topic go here.

User-specified .Sh sections may be added; for example, this section was set with:

BSD January 5, 2006 30

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Sh "PAGE STRUCTURE DOMAIN"

Subsection Headers
Subsection headers have exactly the same syntax as section headers: .Ss is parsed but not generally
callable. It can be used as an argument in a call to .Ss only; it then reactivates the default font for .Ss.

The default width is 8n.

Paragraphs and Line Spacing
.Pp The .Pp paragraph command may be used to specify a line space where necessary. The macro is

not necessary after a .Sh or .Ss macro or before a .Bl or .Bd macro (which both assert a verti-
cal distance unless the −compact flag is given).

The macro is neither callable nor parsed and takes no arguments; an alternative name is .Lp.

Keeps
The only keep that is implemented at this time is for words. The macros are .Bk (begin keep) and .Ek
(end keep). The only option that .Bk accepts currently is −words (this is also the default if no option
is given) which is useful for preventing line breaks in the middle of options. In the example for the make
command line arguments (see What’s in a Name), the keep prevented nroff from placing up the flag
and the argument on separate lines.

Both macros are neither callable nor parsed.

More work needs to be done with the keep macros; specifically, a −line option should be added.

Examples and Displays
There are seven types of displays.

.D1 (This is D-one.) Display one line of indented text. This macro is parsed but not callable.

−ldghfstru

The above was produced by: .D1 Fl ldghfstru.

.Dl (This is D-ell.) Display one line of indented literal text. The .Dl example macro has been used
throughout this file. It allows the indentation (display) of one line of text. Its default font is set to
constant width (literal). .Dl is parsed but not callable.

% ls −ldg /usr/local/bin

The above was produced by: .Dl % ls \−ldg /usr/local/bin.

.Bd Begin display. The .Bd display must be ended with the .Ed macro. It has the following syntax:

.Bd {−literal | −filled | −unfilled | −ragged | −centered} [−offset 〈string〉] [−file 〈file name〉]
[−compact]

−ragged Fill, but do not adjust the right margin (only left-justify).
−centered Center lines between the current left and right margin. Note that each

single line is centered.
−unfilled Do not fill; display a block of text as typed, using line breaks as speci-

fied by the user. This can produce overlong lines without warning mes-
sages.

−filled Display a filled block. The block of text is formatted (i.e., the text is
justified on both the left and right side).

−literal Display block with literal font (usually fixed-width). Useful for source
code or simple tabbed or spaced text.

−file 〈file name〉 The file whose name follows the −file flag is read and displayed
before any data enclosed with .Bd and .Ed, using the selected display
type. Any troff/−mdoc commands in the file will be processed.

BSD January 5, 2006 31

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

−offset 〈string〉 If −offset is specified with one of the following strings, the string is
interpreted to indicate the level of indentation for the forthcoming block
of text:

left Align block on the current left margin; this is the default
mode of .Bd.

center Supposedly center the block. At this time unfortunately,
the block merely gets left aligned about an imaginary
center margin.

indent Indent by one default indent value or tab. The default
indent value is also used for the .D1 and .Dl macros,
so one is guaranteed the two types of displays will line
up. The indentation value is normally set to 6n or about
two thirds of an inch (six constant width characters).

indent−two Indent two times the default indent value.
right This left aligns the block about two inches from the

right side of the page. This macro needs work and per-
haps may never do the right thing within troff.

If 〈string〉 is a valid numeric expression instead (with a scale indicator

other than ‘u’), use that value for indentation. The most useful scale
indicators are ‘m’ and ‘n’, specifying the so-called Em and En square.
This is approximately the width of the letters ‘m’ and ‘n’ respectively of
the current font (for nroff output, both scale indicators give the same
values). If 〈string〉 isn’t a numeric expression, it is tested whether it is
an −mdoc macro name, and the default offset value associated with this
macro is used. Finally, if all tests fail, the width of 〈string〉 (typeset with
a fixed-width font) is taken as the offset.

−compact Suppress insertion of vertical space before begin of display.

.Ed End display (takes no arguments).

Lists and Columns
There are several types of lists which may be initiated with the .Bl begin-list macro. Items within the
list are specified with the .It item macro, and each list must end with the .El macro. Lists may be
nested within themselves and within displays. The use of columns inside of lists or lists inside of col-
umns is unproven.

In addition, several list attributes may be specified such as the width of a tag, the list offset, and compact-
ness (blank lines between items allowed or disallowed). Most of this document has been formatted with
a tag style list (−tag).

It has the following syntax forms:

.Bl {−hang | −ohang | −tag | −diag | −inset} [−width 〈string〉] [−offset 〈string〉] [−compact]

.Bl −column [−offset 〈string〉] 〈string1〉 〈string2〉 . . .

.Bl {−item | −enum [−nested] | −bullet | −hyphen | −dash} [−offset 〈string〉] [−compact]

And now a detailed description of the list types.

−bullet A bullet list.

.Bl −bullet −offset indent −compact

.It
Bullet one goes here.
.It
Bullet two here.
.El

BSD January 5, 2006 32

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

Produces:

• Bullet one goes here.
• Bullet two here.

−dash (or −hyphen)
A dash list.

.Bl −dash −offset indent −compact

.It
Dash one goes here.
.It
Dash two here.
.El

Produces:

− Dash one goes here.
− Dash two here.

−enum An enumerated list.

.Bl −enum −offset indent −compact

.It
Item one goes here.
.It
And item two here.
.El

The result:

1. Item one goes here.
2. And item two here.

If you want to nest enumerated lists, use the −nested flag (starting with the second-level
list):

.Bl −enum −offset indent −compact

.It
Item one goes here
.Bl −enum −nested −compact
.It
Item two goes here.
.It
And item three here.
.El
.It
And item four here.
.El

Result:

1. Item one goes here.
1.1. Item two goes here.
1.2. And item three here.

2. And item four here.

−item A list of type −item without list markers.

.Bl −item −offset indent

.It
Item one goes here.
Item one goes here.
Item one goes here.

BSD January 5, 2006 33

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.It
Item two here.
Item two here.
Item two here.
.El

Produces:

Item one goes here. Item one goes here. Item one goes here.

Item two here. Item two here. Item two here.

−tag A list with tags. Use −width to specify the tag width.

SL sleep time of the process (seconds blocked)
PA GEIN

number of disk I/O’s resulting from references by the process to pages not
loaded in core.

UID numerical user-id of process owner
PPID numerical id of parent of process priority (non-positive when in non-inter-

ruptible wait)

The raw text:

.Bl −tag −width "PPID" −compact −offset indent

.It SL
sleep time of the process (seconds blocked)
.It PAGEIN
number of disk
.Tn I/O Ns ’s
resulting from references by the process
to pages not loaded in core.
.It UID
numerical user−id of process owner
.It PPID
numerical id of parent of process priority
(non−positive when in non−interruptible wait)
.El

−diag Diag lists create section four diagnostic lists and are similar to inset lists except callable
macros are ignored. The −width flag is not meaningful in this context.

Example:

.Bl −diag

.It You can’t use Sy here.
The message says all.
.El

produces

You can’t use Sy here. The message says all.

−hang A list with hanging tags.

Hanged labels appear similar to tagged lists when the label is smaller than the label
width.

Longer hanged list labels blend into the paragraph unlike tagged paragraph labels.

And the unformatted text which created it:

.Bl −hang −offset indent

.It Em Hanged
labels appear similar to tagged lists when the

BSD January 5, 2006 34

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

label is smaller than the label width.
.It Em Longer hanged list labels
blend into the paragraph unlike
tagged paragraph labels.
.El

−ohang Lists with overhanging tags do not use indentation for the items; tags are written to a sepa-
rate line.

SL
sleep time of the process (seconds blocked)

PA GEIN
number of disk I/O’s resulting from references by the process to pages not loaded in
core.

UID
numerical user-id of process owner

PPID
numerical id of parent of process priority (non-positive when in non-interruptible
wait)

The raw text:

.Bl −ohang −offset indent

.It Sy SL
sleep time of the process (seconds blocked)
.It Sy PAGEIN
number of disk
.Tn I/O Ns ’s
resulting from references by the process
to pages not loaded in core.
.It Sy UID
numerical user−id of process owner
.It Sy PPID
numerical id of parent of process priority
(non−positive when in non−interruptible wait)
.El

−inset Here is an example of inset labels:

Ta g The tagged list (also called a tagged paragraph) is the most common type of list
used in the Berkeley manuals. Use a −width attribute as described below.

Diag Diag lists create section four diagnostic lists and are similar to inset lists
except callable macros are ignored.

Hang Hanged labels are a matter of taste.

Ohang Overhanging labels are nice when space is constrained.

Inset Inset labels are useful for controlling blocks of paragraphs and are valuable for
converting −mdoc manuals to other formats.

Here is the source text which produced the above example:

.Bl −inset −offset indent

.It Em Tag
The tagged list (also called a tagged paragraph)
is the most common type of list used in the
Berkeley manuals.
.It Em Diag
Diag lists create section four diagnostic lists

BSD January 5, 2006 35

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

and are similar to inset lists except callable
macros are ignored.
.It Em Hang
Hanged labels are a matter of taste.
.It Em Ohang
Overhanging labels are nice when space is constrained.
.It Em Inset
Inset labels are useful for controlling blocks of
paragraphs and are valuable for converting
.Nm −mdoc
manuals to other formats.
.El

−column This list type generates multiple columns. The number of columns and the width of each
column is determined by the arguments to the −column list, 〈string1〉, 〈string2〉,
etc. If 〈stringN〉 starts with a ‘.’ (dot) immediately followed by a valid −mdoc macro
name, interpret 〈stringN〉 and use the width of the result. Otherwise, the width of
〈stringN〉 (typeset with a fixed-width font) is taken as the Nth column width.

Each .It argument is parsed to make a row, each column within the row is a separate argu-
ment separated by a tab or the .Ta macro.

The table:

String Nroff Troff
<= <= ≤
>= >= ≥

was produced by:

.Bl −column −offset indent ".Sy String" ".Sy Nroff" ".Sy Troff"

.It Sy String Ta Sy Nroff Ta Sy Troff

.It Li <= Ta <= Ta \∗(<=

.It Li >= Ta >= Ta \∗(>=

.El

Don’t abuse this list type! For more complicated cases it might be far better and easier to
use tbl(1), the table preprocessor.

Other keywords:

−width 〈string〉 If 〈string〉 starts with a ‘.’ (dot) immediately followed by a valid −mdoc

macro name, interpret 〈string〉 and use the width of the result. Almost all
lists in this document use this option.

Example:

.Bl −tag −width ".Fl test Ao Ar string Ac"

.It Fl test Ao Ar string Ac
This is a longer sentence to show how the
.Fl width
flag works in combination with a tag list.
.El

gives:

−test 〈string〉 This is a longer sentence to show how the −width flag
works in combination with a tag list.

(Note that the current state of −mdoc is saved before 〈string〉 is interpreted;
afterwards, all variables are restored again. However, boxes (used for enclo-
sures) can’t be sav ed in GNU troff(1); as a consequence, arguments must
always be balanced to avoid nasty errors. For example, do not write .Ao Ar

BSD January 5, 2006 36

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

string but .Ao Ar string Xc instead if you really need only an opening
angle bracket.)

Otherwise, if 〈string〉 is a valid numeric expression (with a scale indicator

other than ‘u’), use that value for indentation. The most useful scale indicators
are ‘m’ and ‘n’, specifying the so-called Em and En square. This is approxi-
mately the width of the letters ‘m’ and ‘n’ respectively of the current font (for
nroff output, both scale indicators give the same values). If 〈string〉 isn’t a
numeric expression, it is tested whether it is an −mdoc macro name, and the
default width value associated with this macro is used. Finally, if all tests fail,
the width of 〈string〉 (typeset with a fixed-width font) is taken as the width.

If a width is not specified for the tag list type, every time .It is invoked, an
attempt is made to determine an appropriate width. If the first argument to .It
is a callable macro, the default width for that macro will be used; otherwise, the
default width of .No is used.

−offset 〈string〉 If 〈string〉 is indent, a default indent value (normally set to 6n, similar to
the value used in .Dl or .Bd) is used. If 〈string〉 is a valid numeric expres-
sion instead (with a scale indicator other than ‘u’), use that value for indenta-
tion. The most useful scale indicators are ‘m’ and ‘n’, specifying the so-called
Em and En square. This is approximately the width of the letters ‘m’ and ‘n’
respectively of the current font (for nroff output, both scale indicators give the
same values). If 〈string〉 isn’t a numeric expression, it is tested whether it is
an −mdoc macro name, and the default offset value associated with this macro
is used. Finally, if all tests fail, the width of 〈string〉 (typeset with a fixed-
width font) is taken as the offset.

−compact Suppress insertion of vertical space before the list and between list items.

MISCELLANEOUS MACROS
Here a list of the remaining macros which do not fit well into one of the above sections. We couldn’t
find real examples for the following macros: .Me and .Ot. They are documented here for completeness
− if you know how to use them properly please send a mail to bug-groff@gnu.org (including an
example).

.Bt prints

is currently in beta test.

It is neither callable nor parsed and takes no arguments.

.Fr

Usage: .Fr 〈function return value〉 . . .

Don’t use this macro. It allows a break right before the return value (usually a single digit) which
is bad typographical behaviour. Use ‘\ ’ to tie the return value to the previous word.

.Hf Use this macro to include a (header) file literally. It first prints File: followed by the file name,
then the contents of 〈file〉.

Usage: .Hf 〈file〉

It is neither callable nor parsed.

.Lk To be written.

.Me Exact usage unknown. The documentation in the −mdoc source file describes it as a macro for
“menu entries”.

Its default width is 6n.

BSD January 5, 2006 37

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

.Mt To be written.

.Ot Exact usage unknown. The documentation in the −mdoc source file describes it as “old function
type (fortran)”.

.Sm Activate (toggle) space mode.

Usage: .Sm [on | off] . . .

If space mode is off, no spaces between macro arguments are inserted. If called without a parame-
ter (or if the next parameter is neither ‘on’ nor off, .Sm toggles space mode.

.Ud prints

currently under development.

It is neither callable nor parsed and takes no arguments.

PREDEFINED STRINGS
The following strings are predefined:

String Nroff Troff Meaning
<= <= ≤ less equal
>= >= ≥ greater equal
Rq ’’ ” right double quote
Lq ‘‘ “ left double quote
ua ˆ ↑ upwards arrow
aa ´ ´ acute accent
ga ` ` grave accent
q " " straight double quote
Pi pi π greek pi
Ne != ≠ not equal
Le <= ≤ less equal
Ge >= ≥ greater equal
Lt < < less than
Gt > > greater than
Pm +− ± plus minus
If infinity ∞ infinity
Am & & ampersand
Na NaN NaN not a number
Ba | | vertical bar

The names of the columns Nroff and Tr off are a bit misleading; Nroff shows the ASCII representation,
while Tr off gives the best glyph form available. For example, a Unicode enabled TTY-device will have
proper glyph representations for all strings, whereas the enhancement for a Latin1 TTY-device is only the
plus-minus sign.

String names which consist of two characters can be written as \∗(xx; string names which consist of
one character can be written as \∗x. A generic syntax for a string name of any length is \∗[xxx] (this
is a GNU troff(1) extension).

DIAGNOSTICS
The debugging macro .Db available in previous versions of −mdoc has been removed since GNU
troff(1) provides better facilities to check parameters; additionally, many error and warning messages
have been added to this macro package, making it both more robust and verbose.

The only remaining debugging macro is .Rd which yields a register dump of all global registers and
strings. A normal user will never need it.

BSD January 5, 2006 38

GROFF_MDOC (7) BSD Miscellaneous Information Manual GROFF_MDOC (7)

FORMATTING WITH GROFF, TROFF, AND NROFF
By default, the package inhibits page breaks, headers, and footers if displayed with a TTY device like
‘latin1’ or ‘unicode’, to make the manual more efficient for viewing on-line. This behaviour can be
changed (e.g. to create a hardcopy of the TTY output) by setting the register ‘cR’ to zero while calling
groff(1), resulting in multiple pages instead of a single, very long page:

groff −Tlatin1 −rcR=0 −mdoc foo.man > foo.txt

For double-sided printing, set register ‘D’ to 1:

groff −Tps −rD1 −mdoc foo.man > foo.ps

To change the document font size to 11pt or 12pt, set register ‘S’ accordingly:

groff −Tdvi −rS11 −mdoc foo.man > foo.dvi

Register ‘S’ is ignored for TTY devices.

The line and title length can be changed by setting the registers ‘LL’ and ‘LT’, respectively:

groff −Tutf8 −rLL=100n −rLT=100n −mdoc foo.man | less

If not set, both registers default to 78n for TTY devices and 6.5i otherwise.

FILES
doc.tmac The main manual macro package.
mdoc.tmac A wrapper file to call doc.tmac.
mdoc/doc-common Common strings, definitions, stuff related typographic output.
mdoc/doc-nroff Definitions used for a TTY output device.
mdoc/doc-ditroff Definitions used for all other devices.
mdoc.local Local additions and customizations.
andoc.tmac Use this file if you don’t know whether the −mdoc or the −man package should

be used. Multiple man pages (in either format) can be handled.

SEE ALSO
groff(1), man(1), troff(1), groff_man(7)

BUGS
Section 3f has not been added to the header routines.

.Nm font should be changed in NAME section.

.Fn needs to have a check to prevent splitting up if the line length is too short. Occasionally it separates
the last parenthesis, and sometimes looks ridiculous if a line is in fill mode.

The list and display macros do not do any keeps and certainly should be able to.

Groff Version 1.20 5 January 2009 39

GROFF_ME(7) GROFF_ME(7)

GROFF_ME

NAME
groff_me − troff macros for formatting papers

SYNOPSIS
groff −me [options] file ...
groff −m me [options] file ...

DESCRIPTION
This manual page describes the GNU version of the −me macros, which is part of the groff document
formatting system. This version can be used with both GNU troff and Unix troff. This package of troff

macro definitions provides a canned formatting facility for technical papers in various formats.

The macro requests are defined below. Many troff requests are unsafe in conjunction with this package,
however, these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

Output of the pic, eqn, refer, and tbl preprocessors is acceptable as input.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/me.tmac (a wrapper file for e.tmac)
c:/progra 1/groff/share/groff/1.20/tmac/e.tmac

SEE ALSO
groff(1), troff(1)
−me Reference Manual, Eric P. Allman
Writing Papers with Groff Using −me

REQUESTS
This list is incomplete; see The −me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c - yes Begin centered block

.(d - no Begin delayed text

.(f - no Begin footnote

.(l - yes Begin list

.(q - yes Begin major quote

.(x x - no Begin indexed item in index x

.(z - no Begin floating keep

.)c - yes End centered block

.)d - yes End delayed text

.)f - yes End footnote

.)l - yes End list

.)q - yes End major quote

.)x - yes End index item

.)z - yes End floating keep

.++ m H - no Define paper section. m defines the part of the paper, and can be C (chapter), A (ap-
pendix), P (preliminary, e.g., abstract, table of contents, etc.), B (bibliography), RC
(chapters renumbered from page one each chapter), or RA (appendix renumbered from
page one).

.+c T - yes Begin chapter (or appendix, etc., as set by .++). T is the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn or neqn.

.EQ x y - yes Precede equation; break out and add space. Equation number is y. The optional argu-
ment x may be I to indent equation (default), L to left-adjust the equation, or C to

Groff Version 1.20 5 January 2009 1

GROFF_ME(7) GROFF_ME(7)

center the equation.
.GE - yes End gremlin picture.
.GS - yes Begin gremlin picture.
.PE - yes End pic picture.
.PS - yes Begin pic picture.
.TE - yes End table.
.TH - yes End heading section of table.
.TS x - yes Begin table; if x is H table has repeated heading.
.b x no no Print x in boldface; if no argument switch to boldface.
.ba +n 0 yes Augments the base indent by n. This indent is used to set the indent on regular text

(like paragraphs).
.bc no yes Begin new column
.bi x no no Print x in bold italics (nofill only)
.bu - yes Begin bulleted paragraph
.bx x no no Print x in a box (nofill only).
.ef ´x´y´z´ ´´´´ no Set even footer to x y z
.eh ´x´y´z´ ´´´´ no Set even header to x y z
.fo ´x´y´z´ ´´´´ no Set footer to x y z
.hx - no Suppress headers and footers on next page.
.he ´x´y´z´ ´´´´ no Set header to x y z
.hl - yes Draw a horizontal line
.i x no no Italicize x; if x missing, italic text follows.
.ip x y no yes Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).
.lp yes yes Start left-blocked paragraph.
.np 1 yes Start numbered paragraph.
.of ´x´y´z´ ´´´´ no Set odd footer to x y z
.oh ´x´y´z´ ´´´´ no Set odd header to x y z
.pd - yes Print delayed text.
.pp no yes Begin paragraph. First line indented.
.r yes no Roman text follows.
.re - no Reset tabs to default values.
.sh n x - yes Section head follows, font automatically bold. n is level of section, x is title of section.
.sk no no Leave the next page blank. Only one page is remembered ahead.
.sm x - no Set x in a smaller pointsize.
.sz +n 10p no Augment the point size by n points.
.tp no yes Begin title page.
.u x - no Underline argument (even in troff). (Nofill only).
.uh - yes Like .sh but unnumbered.
.xp x - no Print index x.

Groff Version 1.20 5 January 2009 2

GROFF_MM(7) GROFF_MM(7)

GROFF_MM

NAME
groff_mm − groff mm macros

SYNOPSIS
groff −mm [options. . .] [files. . .]

DESCRIPTION
The groff mm macros are intended to be compatible with the DWB mm macros with the following lim-
itations:

• No Bell Labs localisms are implemented.

• The macros OK and PM are not implemented.

• groff mm does not support cut marks.

mm is intended to support easy localization. Use mmse as an example how to adapt the output format
to a national standard. Localized strings are collected in the file ‘c:/pro-
gra 1/groff/share/groff/1.20/tmac/xx.tmac’, where xx denotes the two-letter code for the language, as
defined in the ISO 639 standard. For Swedish, this is ‘sv.tmac’ – not ‘se’, which is the ISO 3166 two-
letter code for the country (as used for the output format localization).

A file called locale or country_locale is read after the initialization of the global variables. It is there-
fore possible to localize the macros with a different company name and so on.

In this manual, square brackets are used to show optional arguments.

Number registers and strings
Many macros can be controlled by number registers and strings. A number register is assigned with the
nr command:

.nr XXX [±]n [i]

XXX is the name of the register, n is the value to be assigned, and i is the increment value for auto-
increment. n can have a plus or minus sign as a prefix if an increment or decrement of the current value
is wanted. (Auto-increment or auto-decrement occurs if the number register is used with a plus or
minus sign, \n+[XXX] or \n-[XXX].)

Strings are defined with ds.

.ds YYY string

The string is assigned everything to the end of the line, even blanks. Initial blanks in string should be
prefixed with a double-quote. (Strings are used in the text as \∗[YYY].)

Special formatting of number registers
A number register is printed with normal digits if no format has been given. Set the format with af:

.af R c

R is the name of the register, c is the format.

Form Sequence
1 0, 1, 2, 3, . . .
001 000, 001, 002, 003, . . .
i 0, i, ii, iii, iv, . . .
I 0, I, II, III, IV, . . .
a 0, a, b, c, . . ., z, aa, ab, . . .
A 0, A, B, C, . . ., Z, AA, AB, . . .

Fonts
In mm, the fonts (or rather, font styles) R (normal), I (italic), and B (bold) are hardwired to font posi-
tions 1, 2, and 3, respectively. Internally, font positions are used for backwards compatibility. From a
practical point of view it doesn’t make a big difference – a different font family can still be selected
with a call to the .fam request or using groff’s −f command line option. On the other hand, if you want
to replace just, say, font B, you have to replace the font at position 2 (with a call to ‘.fp 2 . . .’).

Macros

Groff Version 1.20 5 January 2009 1

GROFF_MM(7) GROFF_MM(7)

)E level text

Add heading text text to the table of contents with level, which is either 0 or in the range 1
to 7. See also .H. This macro is used for customized tables of contents.

1C [1] Begin one-column processing. A 1 as an argument disables the page break. Use wide foot-
notes, small footnotes may be overprinted.

2C Begin two-column processing. Splits the page in two columns. It is a special case of MC.
See also 1C.

AE Abstract end, see AS.

AF [name-of-firm]
Author’s firm, should be called before AU, see also COVER.

AL [type [text-indent [1]]]
Start auto-increment list. Items are numbered beginning with one. The type argument con-
trols the format of numbers.

Arg Description
1 Arabic (the default)
A Upper-case letters (A-Z)
a Lower-case letters (a-z)
I Upper-case roman
i Lower-case roman

text-indent sets the indentation and overrides Li. A third argument prohibits printing of a
blank line before each item.

APP name text

Begin an appendix with name name. Automatic naming occurs if name is "". The appen-
dices start with A if automatic naming is used. A new page is ejected, and a header is also
produced if the number variable Aph is non-zero. This is the default. The appendix always
appears in the ‘List of contents’ with correct page numbers. The name ‘APPENDIX’ can be
changed by setting the string App to the desired text. The string Apptxt contains the current
appendix text.

APPSK name pages text

Same as .APP, but the page number is incremented with pages. This is used when diagrams
or other non-formatted documents are included as appendices.

AS [arg [indent]]
Abstract start. Indentation is specified in ‘ens’, but scaling is allowed. Argument arg controls
where the abstract is printed.

An abstract is not printed at all in external letters (MT 5). The indent parameter controls the
indentation of both margins, otherwise normal text indentation is used.

AST [title]
Abstract title. Default is ‘ABSTRACT’. Sets the text above the abstract text.

AT title1 [title2 [. . .]]
Author’s title. AT must appear just after each AU. The title shows up after the name in the
signature block.

AU [name [initials [loc [dept [ext [room [arg [arg [arg]]]]]]]]]
Author information. Specifies the author of the memo or paper, and is printed on the cover
sheet and on other similar places. AU must not appear before TL. The author information
can contain initials, location, department, telephone extension, room number or name and up
to three extra arguments.

AV [name [1]]
Approval signature. Generates an approval line with place for signature and date. The string
‘APPROVED:’ can be changed with variable Letapp; it is replaced with an empty lin if there
is a second argument. The string ‘Date’ can be changed with variable Letdate.

AVL [name]
Letter signature. Generates a line with place for signature.

Groff Version 1.20 5 January 2009 2

GROFF_MM(7) GROFF_MM(7)

B [bold-text [prev-font-text [bold [. . .]]]]
Begin boldface. No limit on the number of arguments. All arguments are concatenated to one
word; the first, third and so on is printed in boldface.

B1 Begin box (as the ms macro). Draws a box around the text. The text is indented one charac-
ter, and the right margin is one character shorter.

B2 End box. Finishes the box started with B1.

BE End bottom block, see BS.

BI [bold-text [italic-text [bold-text [. . .]]]]
Bold-italic. No limit on the number of arguments, see B.

BL [text-indent [1]]
Start bullet list. Initializes a list with a bullet and a space in the beginning of each list item
(see LI). text-indent overrides the default indentation of the list items set by number register
Pi. A third argument prohibits printing of a blank line before each item.

BR [bold-text [roman-text [bold-text [. . .]]]]
Bold-roman. No limit on the number of arguments.

BS Bottom block start. Begins the definition of a text block which is printed at the bottom of each
page. The block ends with BE.

BVL text-indent [mark-indent [1]]
Start of broken variable-item list. Broken variable-item list has no fixed mark, it assumes that
ev ery LI has a mark instead. The text always begins at the next line after the mark. text-

indent sets the indentation to the text, and mark-indent the distance from the current indenta-
tion to the mark. A third argument prohibits printing of a blank line before each item.

COVER [arg]
Begin a coversheet definition. It is important that .COVER appears before any normal text.
This macro uses arg to build the filename ‘c:/pro-
gra 1/groff/share/groff/1.20/tmac/mm/arg.cov’. Therefore it is possible to create unlimited
types of cover sheets. ‘ms.cov’ is supposed to look like the ms cover sheet. .COVER
requires a .COVEND at the end of the cover definition. Always use this order of the cover
macros:

.COVER

.TL

.AF

.AU

.AT

.AS

.AE

.COVEND

However, only .TL and .AU are required.

COVEND
Finish the cover description and print the cover page. It is defined in the cover file.

DE Display end. Ends a block of text or display that begins with DS or DF.

DF [format [fill [rindent]]]
Begin floating display (no nesting allowed). A floating display is saved in a queue and is
printed in the order entered. Format, fill, and rindent are the same as in DS. Floating displays
are controlled by the two number registers De and Df.

De register

Df register

DL [text-indent [1 [1]]]
Dash list start. Begins a list where each item is printed after a dash. text-indent changes the
default indentation of the list items set by number register Pi. A second argument prevents an
empty line between each list item. See LI. A third argument prohibits printing of a blank line

Groff Version 1.20 5 January 2009 3

GROFF_MM(7) GROFF_MM(7)

before each item.

DS [format [fill [rindent]]]
Static display start. Begins collection of text until DE. The text is printed together on the
same page, unless it is longer than the height of the page. DS can be nested arbitrarily.

format

The values ‘L’, ‘I’, ‘C’, and ‘CB’ can also be specified as ‘0’, ‘1’, ‘2’, and ‘3’, respectively, for
compatibility reasons.

fill

"" Line-filling turned off.
none Line-filling turned off.
N Line-filling turned off.
F Line-filling turned on.

‘N’ and ‘F’ can also be specified as ‘0’ and ‘1’, respectively.

By default, an empty line is printed before and after the display. Setting number register Ds
to 0 prevents this. rindent shortens the line length by that amount.

EC [title [override [flag [refname]]]]
Equation title. Sets a title for an equation. The override argument changes the numbering.

flag

EC uses the number register Ec as a counter. It is possible to use .af to change the format of
the number. If number register Of is 1, the format of title uses a dash instead of a dot after the
number.

The string Le controls the title of the List of Equations; default is ‘LIST OF EQUATIONS’.
The List of Equations is only printed if number register Le is 1. The default is 0. The string
Liec contains the word ‘Equation’, which is printed before the number. If refname is used,
then the equation number is saved with .SETR, and can be retrieved with ‘.GETST refname’.

Special handling of the title occurs if EC is used inside DS/DE; it is not affected by the format
of DS.

EF [arg]
Even-page footer, printed just above the normal page footer on even pages. See PF.

This macro defines string EOPef.

EH [arg]
Even-page header, printed just below the normal page header on even pages. See PH.

This macro defines string TPeh.

EN Equation end, see EQ.

EOP End-of-page user-defined macro. This macro is called instead of the normal printing of the
footer. The macro is executed in a separate environment, without any trap active. See TP.

strings available to EOP
EOPf argument of PF
EOPef argument of EF
EOPof argument of OF

EPIC [−L] width height [name]
Draw a box with the given width and height. It also prints the text name or a default string if
name is not specified. This is used to include external pictures; just give the size of the pic-
ture. −L left-adjusts the picture; the default is to center. See PIC.

EQ [label]
Equation start. EQ/EN are the delimiters for equations written for eqn(1). EQ/EN must be
inside of a DS/DE pair, except if EQ is used to set options for eqn only. The label argument
appears at the right margin of the equation, centered vertically within the DS/DE block, unless
number register Eq is 1. Then the label appears at the left margin.

Groff Version 1.20 5 January 2009 4

GROFF_MM(7) GROFF_MM(7)

If there are multiple EQ/EN blocks within a single DS/DE pair, only the last equation label (if
any) is printed.

EX [title [override [flag [refname]]]]
Exhibit title. The arguments are the same as for EC. EX uses the number register Ex as a
counter. The string Lx controls the title of the List of Exhibits; default is ‘LIST OF
EXHIBITS’. The List of Exhibits is only printed if number register Lx is 1, which is the
default. The string Liex contains the word ‘Exhibit’, which is printed before the number. If
refname is used, the exhibit number is saved with .SETR, and can be retrieved with ‘.GETST
refname’.

Special handling of the title occurs if EX is used inside DS/DE; it is not affected by the format
of DS.

FC [closing]
Print ‘Yours very truly,’ as a formal closing of a letter or memorandum. The argument
replaces the default string. The default is stored in string variable Letfc.

FD [arg [1]]
Footnote default format. Controls the hyphenation (hyphen), right margin justification
(adjust), and indentation of footnote text (indent). It can also change the label justification
(ljust).

arg hyphen adjust indent ljust
0 no yes yes left
1 yes yes yes left
2 no no yes left
3 yes no yes left
4 no yes no left
5 yes yes no left
6 no no no left
7 yes no no left
8 no yes yes right
9 yes yes yes right
10 no no yes right
11 yes no yes right

An argument greater than or equal to 11 is considered as value 0. Default for mm is 10.

FE Footnote end.

FG [title [override [flag [refname]]]]
Figure title. The arguments are the same as for EC. FG uses the number register Fg as a
counter. The string Lf controls the title of the List of Figures; default is ‘LIST OF FIGURES’.
The List of Figures is only printed if number register Lf is 1, which is the default. The string
Lifg contains the word ‘Figure’, which is printed before the number. If refname is used, then
the figure number is saved with .SETR, and can be retrieved with ‘.GETST refname’.

Special handling of the title occurs if FG is used inside DS/DE, it is not affected by the format
of DS.

FS [label]
Footnote start. The footnote is ended by FE. By default, footnotes are automatically num-
bered; the number is available in string F. Just add \∗F in the text. By adding label, it is pos-
sible to have other number or names on the footnotes. Footnotes in displays are now possible.
An empty line separates footnotes; the height of the line is controlled by number register Fs,
default value is 1.

GETHN refname [varname]
Include the header number where the corresponding ‘SETR refname’ was placed. This is dis-
played as ‘X.X.X.’ in pass 1. See INITR. If varname is used, GETHN sets the string vari-
able varname to the header number.

GETPN refname [varname]
Include the page number where the corresponding ‘SETR refname’ was placed. This is

Groff Version 1.20 5 January 2009 5

GROFF_MM(7) GROFF_MM(7)

displayed as ‘9999’ in pass 1. See INITR. If varname is used, GETPN sets the stringvari-
able varname to the page number.

GETR refname

Combine GETHN and GETPN with the text ‘chapter’ and ‘, page’. The string Qrf contains
the text for the reference:

.ds Qrf See chapter \\∗[Qrfh], page \\∗[Qrfp].

Qrf may be changed to support other languages. Strings Qrfh and Qrfp are set by GETR
and contain the page and header number, respectively.

GETST refname [varname]
Include the string saved with the second argument to .SETR. This is a dummy string in
pass 1. If varname is used, GETST sets it to the saved string. See INITR.

H level [heading-text [heading-suffix]]
Numbered section heading. Section headers can have a lev el between 1 and 14; level 1 is the
top level. The text is given in heading-text, and must be surrounded by double quotes if it
contains spaces. heading-suffix is added to the header in the text but not in the table of con-
tents. This is normally used for footnote marks and similar things. Don’t use \∗F in heading-

suffix, it doesn’t work. A manual label must be used, see FS.

A call to the paragraph macro P directly after H is ignored. H takes care of spacing and
indentation.

Page ejection before heading

Number register Ej controls page ejection before the heading. By default, a level-one
heading gets two blank lines before it; higher levels only get one. A new page is
ejected before each first-level heading if number register Ej is 1. All levels below or
equal the value of Ej get a new page. Default value for Ej is 0.

Heading break level

A line break occurs after the heading if the heading level is less or equal to number
register Hb. Default value is 2.

Heading space level

A blank line is inserted after the heading if the heading level is less or equal to num-
ber register Hs. Default value is 2.

Te xt follows the heading on the same line if the level is greater than both Hb and Hs.

Post-heading indent

Indentation of the text after the heading is controlled by number register Hi. Default
value is 0.

Hi

Centered section headings

All headings whose level is equal or below number register Hc and also less
than or equal to Hb or Hs are centerered.

Font control of the heading

The font of each heading level is controlled by string HF. It contains a font
number or font name for each level. Default value is

2 2 2 2 2 2 2 2 2 2 2 2 2 2

(all headings in italic). This could also be written as

I I I I I I I I I I I I I I

Note that some other implementations use 3 3 2 2 2 2 2 as the default value.
All omitted values are presumed to have value 1.

Point size control

Groff Version 1.20 5 January 2009 6

GROFF_MM(7) GROFF_MM(7)

String HP controls the point size of each heading, in the same way as HF
controls the font. A value of 0 selects the default point size. Default value
is

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Beware that only the point size changes, not the vertical size. The latter can
be controlled by the user-specified macros HX and/or HZ.

Heading counters

Fourteen number registers named H1 up to H14 contain the counter for each
heading level. The values are printed using arabic numerals; this can be
changed with the macro HM (see below). All marks are concatenated
before printing. To avoid this, set number register Ht to 1. This only prints
the current heading counter at each heading.

Automatic table of contents

All headings whose level is equal or below number register Cl are saved to
be printed in the table of contents. Default value is 2.

Special control of the heading, user-defined macros

The following macros can be defined by the user to get a finer control of
vertical spacing, fonts, or other features. Argument level is the level-argu-
ment to H, but 0 for unnumbered headings (see HU). Argument rlevel is the
real level; it is set to number register Hu for unnumbered headings. Argu-
ment heading-text is the text argument to H and HU.

HX level rlevel heading-text

This macro is called just before the printing of the heading. The
following registers are available for HX. Note that HX may alter
}0, }2, and ;3.

}0 (string)
Contains the heading mark plus two spaces if rlevel is
non-zero, otherwise empty.

;0 (register)
Contains the position of the text after the heading.
0 means that the text should follow the heading on the
same line, 1 means that a line break should occur before
the text, and 2 means that a blank line should separate the
heading and the text.

}2 (string)
Contains two spaces if register ;0 is 0. It is used to sepa-
rate the heading from the text. The string is empty if ;0 is
non-zero.

;3 (register)
Contains the needed space in units after the heading.
Default is 2v. Can be used to change things like number-
ing (}0), vertical spacing (}2), and the needed space after
the heading.

HY dlevel rlevel heading-text

This macro is called after size and font calculations and might be
used to change indentation.

HZ dlevel rlevel heading-text

This macro is called after the printing of the heading, just before H
or HU exits. Can be used to change the page header according to
the section heading.

HC [hyphenation-character]
Set hyphenation character. Default value is ‘\’. Resets to the default if called without

Groff Version 1.20 5 January 2009 7

GROFF_MM(7) GROFF_MM(7)

argument. Hyphenation can be turned off by setting number register Hy to 0 at the
beginning of the file.

HM [arg1 [arg2 [. . . [arg14]]]]
Heading mark style. Controls the type of marking for printing of the heading coun-
ters. Default is 1 for all levels.

Argument
1 Arabic numerals.
0001 Arabic numerals with leading zeroes, one or more.
A upper-case alphabetic
a lower-case alphabetic
I upper-case roman numerals
i lower-case roman numerals
"" Arabic numerals.

HU heading-text

Unnumbered section header. HU behaves like H at the level in number register Hu.
See H.

HX dlevel rlevel heading-text

User-defined heading exit. Called just before printing the header. See H.

HY dlevel rlevel heading-text

User-defined heading exit. Called just before printing the header. See H.

HZ dlevel rlevel heading-text

User-defined heading exit. Called just after printing the header. See H.

I [italic-text [prev-font-text [italic-text [. . .]]]]
Italic. Changes the font to italic if called without arguments. With one argument it
sets the word in italic. With two arguments it concatenates them and sets the first
word in italic and the second in the previous font. There is no limit on the number of
argument; all are concatenated.

IA [addressee-name [title]]
Begin specification of the addressee and addressee’s address in letter style. Several
names can be specified with empty IA/IE-pairs, but only one address. See LT.

IB [italic-text [bold-text [italic-text [. . .]]]]
Italic-bold. Even arguments are printed in italic, odd in boldface. See I.

IE End the address specification after IA.

INITI type filename [macro]
Initialize the new index system and set the filename to collect index lines in with
IND. Argument type selects the type of index: page number, header marks or both.
The default is page numbers.

It is also possible to create a macro that is responsible for formatting each row; just
add the name of the macro as a third argument. The macro is then called with the
index as argument(s).

type

INITR filename

Initialize the refence macros. References are written to stderr and are supposed to be
written to ‘filename.qrf ’. Requires two passes with groff; this is handled by a sepa-
rate program called mmroff(1). This program exists because groff(1) by default
deactivates the unsafe operations that are required by INITR. The first pass looks for
references, and the second one includes them. INITR can be used several times, but
it is only the first occurrence of INITR that is active.

See also SETR, GETPN, and GETHN.

IND arg1 [arg2 [. . .]]
Write a line in the index file selected by INITI with all arguments and the page

Groff Version 1.20 5 January 2009 8

GROFF_MM(7) GROFF_MM(7)

number or header mark separated by tabs.

Examples

arg1\tpage number
arg1\targ2\tpage number
arg1\theader mark
arg1\tpage number\theader mark

INDP Print the index by running the command specified by string variable Indcmd, which
has ‘sort −t\t’ as the default value. INDP reads the output from the command to form
the index, by default in two columns (this can be changed by defining TYIND). The
index is printed with string variable Index as header, default is ‘INDEX’. One-col-
umn processing is reactivated after the list. INDP calls the user-defined macros
TXIND, TYIND, and TZIND if defined. TXIND is called before printing the string
‘INDEX’, TYIND is called instead of printing ‘INDEX’, and TZIND is called after
the printing and should take care of restoring to normal operation again.

ISODATE [0]
Change the predefined date string in DT to ISO-format, this is, ‘YYYY-MM-DD’.
This can also be done by adding −rIso=1 on the command line. Reverts to old date
format if argument is 0.

IR [italic-text [roman-text [italic-text [. . .]]]]
Italic-roman. Even arguments are printed in italic, odd in roman. See I.

LB text-indent mark-indent pad type [mark [LI-space [LB-space]]]
List-begin macro. This is the common macro used for all lists. text-indent is the
number of spaces to indent the text from the current indentation.

pad and mark-indent control where to put the mark. The mark is placed within the
mark area, and mark-indent sets the number of spaces before this area. By default it
is 0. The mark area ends where the text begins. The start of the text is still controlled
by text-indent.

The mark is left-justified whitin the mark area if pad is 0. If pad is greater than 0,
mark-indent is ignored, and the mark is placed pad spaces before the text. This right-
justifies the mark.

If type is 0 the list either has a hanging indentation or, if argument mark is given, the
string mark as a mark.

If type is greater than 0 automatic numbering occurs, using arabic numbers if mark is
empty. mark can then be any of ‘1’, ‘A’, ‘a’, ‘I’, or ‘i’.

type selects one of six possible ways to display the mark.

type

1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

Every item in the list gets LI-space number of blank lines before them. Default is 1.

LB itself prints LB-space blank lines. Default is 0.

LC [list-level]
List-status clear. Terminates all current active lists down to list-level, or 0 if no
argmuent is given. This is used by H to clear any active list.

LE [1] List end. Terminates the current list. LE outputs a blank line if an argument is given.

LI [mark [1|2]]
List item preceding every item in a list. Without argument, LI prints the mark

Groff Version 1.20 5 January 2009 9

GROFF_MM(7) GROFF_MM(7)

determined by the current list type. By giving LI one argument, it uses that as the
mark instead. Tw o arguments to LI makes mark a prefix to the current mark. There
is no separating space between the prefix and the mark if the second argument is ‘2’
instead of ‘1’. This behaviour can also be achieved by setting number register Limsp
to zero. A zero length mark makes a hanging indentation instead.

A blank line is printed before the list item by default. This behaviour can be con-
trolled by number register Ls. Pre-spacing occurs for each list level less than or
equal to Ls. Default value is 99. There is no nesting limit.

The indentation can be changed through number register Li. Default is 6.

All lists begin with a list initialization macro, LB. There are, however, sev en prede-
fined list types to make lists easier to use. They all call LB with different default val-
ues.

AL Automatically Incremented List
ML Marked List
VL Variable-Item List
BL Bullet List
DL Dash List
RL Reference List
BVL Broken Variable List.

These lists are described at other places in this manual. See also LB.

LT [arg]
Format a letter in one of four different styles depending on the argument. See also
section INTERNALS.

LO type [arg]
Specify options in letter (see .LT). This is a list of the standard options:

MC column-size [column-separation]
Begin multiple columns. Return to normal with 1C. MC creates as many columns
as the current line length permits. column-size is the width of each column, and col-

umn-separation is the space between two columns. Default separation is column-

size/15. See also 1C.

ML mark [text-indent [1]]
Marked list start. The mark argument is printed before each list item. text-indent sets
the indent and overrides Li. A third argument prohibits printing of a blank line
before each item.

MT [arg [addressee]]
Memorandum type. The argument arg is part of a filename in ‘c:/pro-
gra 1/groff/share/groff/1.20/tmac/mm/∗.MT’. Memorandum types 0 to 5 are sup-
ported, including type ‘string’ (which gets internally mapped to type 6). addressee

just sets a variable, used in the AT.T macros.

arg

0 Normal memorandum, no type printed.
1 Memorandum with ‘MEMORANDUM FOR FILE’ printed.
2 Memorandum with ‘PROGRAMMER’S NOTES’ printed.
3 Memorandum with ‘ENGINEER’S NOTES’ printed.
4 Released paper style.
5 External letter style.

See also COVER/COVEND, a more flexible type of front page.

MOVE y-pos [x-pos [line-length]]
Move to a position, setting page offset to x-pos. If line-length is not given, the differ-
ence between current and new page offset is used. Use PGFORM without argu-
ments to return to normal.

Groff Version 1.20 5 January 2009 10

GROFF_MM(7) GROFF_MM(7)

MULB cw1 space1 [cw2 space2 [cw3 . . .]]
Begin a special multi-column mode. All columns widths must be specified. The
space between the columns must be specified also. The last column does not need
any space definition. MULB starts a diversion, and MULE ends the diversion and
prints the columns. The unit for the width and space arguments is ‘n’, but MULB
accepts all normal unit specifications like ‘c’ and ‘i’. MULB operates in a separate
environment.

MULN Begin the next column. This is the only way to switch the column.

MULE End the multi-column mode and print the columns.

nP [type]
Print numbered paragraph with header level two. See .P.

NCOL Force printing to the next column. Don’t use this together with the MUL∗ macros,
see 2C.

NS [arg [1]]
Print different types of notations. The argument selects between the predefined type
of notations. If the second argument is available, then the argument becomes the
entire notation. If the argument doesn’t select a predefined type, it is printed as
‘Copy (arg) to’. It is possible to add more standard notations, see the string variables
Letns and Letnsdef.

Arg Notation
none Copy To
"" Copy To
1 Copy To (with att.) to
2 Copy To (without att.) to
3 Att.
4 Atts.
5 Enc.
6 Encs.
7 Under separate cover
8 Letter to
9 Memorandum to
10 Copy (with atts.) to
11 Copy (without atts.) to
12 Abstract Only to
13 Complete Memorandum to
14 CC

ND new-date

New date. Overrides the current date. Date is not printed if new-date is an empty
string.

OF [arg]
Odd-page footer, a line printed just above the normal footer. See EF and PF.

This macro defines string EOPof.

OH [arg]
Odd-page header, a line printed just below the normal header. See EH and PH.

This macro defines string TPoh.

OP Make sure that the following text is printed at the top of an odd-numbered page.
Does not output an empty page if currently at the top of an odd page.

P [type]
Begin new paragraph. P without argument produces left-justified text, even the first
line of the paragraph. This is the same as setting type to 0. If the argument is 1, the
first line of text following P is indented by the number of spaces in number register
Pi, by default 5.

Groff Version 1.20 5 January 2009 11

GROFF_MM(7) GROFF_MM(7)

Instead of giving an argument to P it is possible to set the paragraph type in number
register Pt. Using 0 and 1 is the same as adding that value to P. A value of 2 indents
all paragraphs, except after headings, lists, and displays (this value can’t be used as
an argument to P itself).

The space between two paragraphs is controlled by number register Ps, and is 1 by
default (one blank line).

PGFORM [linelength [pagelength [pageoffset [1]]]]
Set line length, page length, and/or page offset. This macro can be used for special
formatting, like letter heads and other. It is normally the first command in a file,
though it is not necessary. PGFORM can be used without arguments to reset every-
thing after a MOVE call. A line break is done unless the fourth argument is given.
This can be used to avoid the page number on the first page while setting new width
and length. (It seems as if this macro sometimes doesn’t work too well. Use the
command line arguments to change line length, page length, and page offset instead.)

PGNH No header is printed on the next page. Used to get rid of the header in letters or other
special texts. This macro must be used before any text to inhibit the page header on
the first page.

PIC [−L] [−C] [−R] [−I n] filename [width [height]]
Include a PostScript file in the document. The macro depends on mmroff(1) and
INITR. The arguments −L, −C, −R, and −I n adjust the picture or indent it. The
optional width and height can also be given to resize the picture.

PE Picture end. Ends a picture for pic(@MAN1EXT).

PF [arg]
Page footer. PF sets the line to be printed at the bottom of each page. Empty by
default. See PH for the argument specification.

This macro defines string EOPf.

PH [arg]
Page header, a line printed at the top of each page. The argument should be specified
as

"’left-part’center-part’right-part’"

where left-part, center-part, and right-part are printed left-justified, centered, and
right justified, respectively. Within the argument to PH, the character ‘’ is changed to
the current page number. The default argument is

"’’- -’’"

which gives the page number between two dashes.

This macro defines string TPh.

PS Picture start (from pic). Begins a picture for pic(1).

PX Page header user-defined exit. This macro is called just after the printing of the page
header in no-space mode.

R Roman. Return to roman font, see also I.

RB [roman-text [bold-text [roman-text [. . .]]]]
Roman-bold. Even arguments are printed in roman, odd in boldface. See I.

RD [prompt [diversion [string]]]
Read from standard input to diversion and/or string. The text is saved in a div ersion
named diversion. Recall the text by writing the name of the diversion after a dot on
an empty line. A string is also defined if string is given. Diversion and/or prompt

can be empty ("").

RF Reference end. Ends a reference definition and returns to normal processing. See
RS.

Groff Version 1.20 5 January 2009 12

GROFF_MM(7) GROFF_MM(7)

RI [roman-text [italic-text [roman-text [. . .]]]]
Print even arguments in roman, odd in italic. See I.

RL [text-indent[1]]
Reference list start. Begins a list where each item is preceded with an automatically
incremented number between square brackets. text-indent changes the default inden-
tation.

RP [arg1 [arg2]]
Produce reference page. This macro can be used if a reference page is wanted some-
where in the document. It is not needed if TC is used to produce a table of contents.
The reference page is then printed automatically.

The reference counter is not reset if arg1 is 1.

arg2 tells RP whether to eject a page or not.

arg2

The reference items are separated by a blank line. Setting number register Ls to 0
suppresses the line.

The string Rp contains the reference page title and is set to ‘REFERENCES’ by
default.

RS [string-name]
Begin an automatically numbered reference definition. Put the string \∗(Rf where the
reference mark should be and write the reference between RS/RF at next new line
after the reference mark. The reference number is stored in number register :R. If
string-name is given, a string with that name is defined and contains the current refer-
ence mark. The string can be referenced as \∗[string-name] later in the text.

S [size [spacing]]
Set point size and vertical spacing. If any argument is equal to ‘P’, the previous
value is used. A ‘C’ means current value, and ‘D’ the default value. If ‘+’ or ‘−’ is
used before the value, the current value is incremented or decremented, respectively.

SA [arg]
Set right-margin justification. Justification is turned on by default. No argument or
value ‘0’ turns off justification, and ‘1’ turns on justification.

SETR refname [string]
Remember the current header and page number as refname. Sav es string if string is
defined. string is retrieved with .GETST. See INITR.

SG [arg [1]]
Signature line. Prints the authors name(s) after the formal closing. The argument is
appended to the reference data, printed at either the first or last author. The reference
data is the location, department, and initials specified with .AU. It is printed at the
first author if the second argument is given, otherwise at the last. No reference data is
printed if the author(s) is specified through .WA/.WE. See section INTERNALS.

SK [pages]
Skip pages. If pages is 0 or omitted, a skip to the next page occurs unless it is
already at the top of a page. Otherwise it skips pages pages.

SM string1 [string2 [string3]]
Make a string smaller. If string2 is given, string1 is made smaller and string2 stays
at normal size, concatenated with string1. With three arguments, everything is con-
catenated, but only string2 is made smaller.

SP [lines]
Space vertically. lines can have any scaling factor, like ‘3i’ or ‘8v’. Several SP calls
in a line only produces the maximum number of lines, not the sum. SP is ignored
also until the first text line in a page. Add \. before a call to SP to avoid this.

TAB Reset tabs to every 5n. Normally used to reset any previous tab positions.

Groff Version 1.20 5 January 2009 13

GROFF_MM(7) GROFF_MM(7)

TB [title [override [flag [refname]]]]
Table title. The arguments are the same as for EC. TB uses the number register Tb
as a counter. The string Lt controls the title of the List of Tables; default value is
‘LIST OF TABLES’. The List of Tables is only printed if number register Lt is 1,
which is the default. The string Litb contains the word ‘TABLE’, which is printed
before the number.

Special handling of the title occurs if TB is used inside DS/DE, it is not affected by
the format of DS.

TC [slevel [spacing [tlevel [tab [h1 [h2 [h3 [h4 [h5]]]]]]]]]
Table of contents. This macro is normally used as the last line of the document. It
generates a table of contents with headings up to the level controlled by number reg-
ister Cl. Note that Cl controls the saving of headings, it has nothing to do with TC.
Headings with a level less than or equal to slevel get spacing number of lines before
them. Headings with a level less than or equal to tlevel have their page numbers
right-justified with dots or spaces separating the text and the page number. Spaces
are used if tab is greater than zero, dots otherwise. Other headings have the page
number directly at the end of the heading text (ra g g ed-right).

The rest of the arguments is printed, centered, before the table of contents.

The user-defined macros TX and TY are used if TC is called with at most four argu-
ments. TX is called before the printing of the string ‘CONTENTS’, and TY is called
instead of printing ‘CONTENTS’.

Equivalent macros can be defined for list of figures, tables, equations and exhibits by
defining TXxx or TYxx, where xx is ‘Fg’, ‘TB’, ‘EC’, or ‘EX’, respectively.

String Ci can be set to control the indentations for each heading-level. It must be
scaled, like

.ds Ci .25i .5i .75i 1i 1i

By default, the indentation is controlled by the maximum length of headings in each
level.

The string variables Lifg, Litb, Liex, Liec, and Licon contain ‘Figure’, ‘TABLE’,
‘Exhibit’, ‘Equation’, and ‘CONTENTS’, respectively. These can be redefined to
other languages.

TE Table end. See TS.

TH [N] Table header. See TS. TH ends the header of the table. This header is printed again
if a page break occurs. Argument ‘N’ isn’t implemented yet.

TL [charging-case-number [filing-case-number]]
Begin title of memorandum. All text up to the next AU is included in the title.
charging-case-number and filing-case-number are saved for use in the front page pro-
cessing.

TM [num1 [num2 [. . .]]]
Technical memorandum numbers used in .MT. An unlimited number of arguments
may be given.

TP Top-of-page user-defined macro. This macro is called instead of the normal page
header. It is possible to get complete control over the header. Note that the header
and the footer are printed in a separate environment. Line length is preserved,
though. See EOP.

strings available to TP
TPh argument of PH
TPeh argument of EH
TPoh argument of OH

TS [H] Table start. This is the start of a table specification to tbl(1). TS ends with TE.
Argument ‘H’ tells mm that the table has a header. See TH.

Groff Version 1.20 5 January 2009 14

GROFF_MM(7) GROFF_MM(7)

TX User-defined table of contents exit. This macro is called just before TC prints the
word ‘CONTENTS’. See TC.

TY User-defined table of contents exit. This macro is called instead of printing ‘CON-
TENTS’. See TC.

VERBON [flag [point-size [font]]]
Begin verbatim output using Courier font. Usually for printing programs. All char-
acters have equal width. The point size can be changed with the second argument.
By specifying a third argument it is possible to use another font instead of Courier.
flag controls several special features. Its value is the sum of all wanted features.

VERBOFF
End verbatim output.

VL text-indent [mark-indent [1]]
Variable-item list. It has no fixed mark, it assumes that every LI has a mark instead.
text-indent sets the indent to the text, and mark-indent the distance from the current
indentation to the mark. A third argument prohibits printing of a blank line before
each item.

VM [−T] [top [bottom]]
Vertical margin. Adds extra vertical top and margin space. Option −T sets the total
space instead. If no argument is given, reset the margin to zero, or the default (‘7v
5v’) if −T has been used. It is higly recommended that macros TP and/or EOP are
defined if using −T and setting top and/or bottom margin to less than the default.

WA [writer-name [title]]
Begin specification of the writer and writer’s address. Several names can be specified
with empty WA/WE pairs, but only one address.

WE End the address specification after .WA.

WC [format1] [format2] [. . .]
Footnote and display width control.

Strings used in mm
App A string containing the word ‘APPENDIX’.

Apptxt The current appendix text.

EM Em dash string

H1txt Updated by .H and .HU to the current heading text. Also updated in table of contents .
friends.

HF Font list for headings, ‘2 2 2 2 2 2 2’ by default. Non-numeric font names may also be used.

HP Point size list for headings. By default, this is ‘0 0 0 0 0 0 0’ which is the same as ‘10 10 10
10 10 10 10’.

Index Contains the string ‘INDEX’.

Indcmd
Contains the index command. Default value is ‘sort −t\t’.

Lifg String containing ‘Figure’.

Litb String containing ‘TABLE’.

Liex String containing ‘Exhibit’.

Liec String containing ‘Equation’.

Licon String containing ‘CONTENTS’.

Lf Contains the string ‘LIST OF FIGURES’.

Lt Contains the string ‘LIST OF TABLES’.

Lx Contains the string ‘LIST OF EXHIBITS’.

Groff Version 1.20 5 January 2009 15

GROFF_MM(7) GROFF_MM(7)

Le Contains the string ‘LIST OF EQUATIONS’.

Letfc Contains the string ‘Yours very truly,’, used in .FC.

Letapp Contains the string ‘APPROVED:’, used in .AV.

Letdate
Contains the string ‘Date’, used in .AV.

LetCN Contains the string ‘CONFIDENTIAL’, used in .LO CN.

LetSA Contains the string ‘To Whom It May Concern:’, used in .LO SA.

LetAT Contains the string ‘ATTENTION:’, used in .LO AT.

LetSJ Contains the string ‘SUBJECT:’, used in .LO SJ.

LetRN Contains the string ‘In reference to:’, used in .LO RN.

Letns is an array containing the different strings used in .NS. It is really a number of string variables
prefixed with Letns!. If the argument doesn’t exist, it is included between () with Letns!copy
as a prefix and Letns!to as a suffix. Observe the space after ‘Copy’ and before ‘to’.

Name Value
Letns!0 Copy to
Letns!1 Copy (with att.) to
Letns!2 Copy (without att.) to
Letns!3 Att.
Letns!4 Atts.
Letns!5 Enc.
Letns!6 Encs.
Letns!7 Under separate cover
Letns!8 Letter to
Letns!9 Memorandum to
Letns!10 Copy (with atts.) to
Letns!11 Copy (without atts.) to
Letns!12 Abstract Only to
Letns!13 Complete Memorandum to
Letns!14 CC
Letns!copy Copy \"
Letns!to " to

Letnsdef
Define the standard notation used when no argument is given to .NS. Default is 0.

MO1 - MO12
Strings containing the month names ‘January’ through ‘December’.

Qrf String containing ‘See chapter \\∗[Qrfh], page \\n[Qrfp].’.

Rp Contains the string ‘REFERENCES’.

Tcst Contains the current status of the table of contents and list of figures, etc. Empty outside of
.TC. Useful in user-defined macros like .TP.

Value Meaning
co Table of contents
fg List of figures
tb List of tables
ec List of equations
ex List of exhibits
ap Appendix

Tm Contains the string ‘\(tm’, the trade mark symbol.

Verbnm
Argument to .nm in the .VERBON command. Default is 1.

Number variables used in mm

Groff Version 1.20 5 January 2009 16

GROFF_MM(7) GROFF_MM(7)

Aph Print an appendix page for every new appendix if this number variable is non-zero. No output
occurs if Aph is zero, but there is always an appendix entry in the ‘List of contents’.

Cl Contents level (in the range 0 to 14). The contents is saved if a heading level is lower than or
equal to the value of Cl. Default is 2.

Cp Eject page between list of table, list of figure, etc., if the value of Cp is zero. Default is 0.

D Debug flag. Values greater than zero produce debug information of increasing verbosity. A
value of 1 gives information about the progress of formatting. Default is 0.

De If set to 1, eject after floating display is output. Default is 0.

Dsp If defined, it controls the space output before and after static displays. Otherwise the value of
Lsp is used.

Df Control floating keep output. This is a number in the range 0 to 5, with a default value of 5.
See .DF.

Ds If set to 1, use the amount of space stored in register Lsp before and after display. Default
is 1.

Ej If set to 1, eject page before each first-level heading. Default is 0.

Eq Equation labels are left-adjusted if set to 0 and right-adjusted if set to 1. Default is 0.

Fs Footnote spacing. Default is 1.

H1 - H7
Heading counters

H1dot Append a dot after the level-one heading number if value is greater than zero. Default is 1.

H1h A copy of number register H1, but it is incremented just before the page break. Useful in
user-defined header macros.

Hb Heading break level. A number in the range 0 to 14, with a default value of 2. See .H.

Hc Heading centering level. A number in the range 0 to 14, with a default value value of 0.
See .H.

Hi Heading temporary indent. A number in the range 0 to 2, with a default value of 1.

Hps Heading pre-space level. If the heading level is less than or equal to Hps, two lines precede
the section heading instead of one. Default is first level only. The real amount of lines is con-
trolled by the variables Hps1 and Hps2.

Hps1 Number of lines preceding .H if the heading level is greater than Hps. Value is in units,
default is 0.5.

Hps2 Number of lines preceding .H if the heading level is less than or equal to Hps. Value is in
units, default is 1.

Hs Heading space level. A number in the range 0 to 14, with a default value of 2. See .H.

Hss Number of lines following .H if the heading level is less than or equal to Hs. Value is in units,
default is 1.

Ht Heading numbering type.

0 multiple levels (1.1.1, 1.1.2, etc.)
1 single level

Default is 0.

Hu Unnumbered heading level. Default is 2.

Hy Hyphenation status of text body.

0 no hyphenation
1 hyphenation on, set to value 14

Default is 0.
Iso Set this variable to 1 on the command line to get an ISO-formatted date string (−rIso=1).

Useless inside of a document.

Groff Version 1.20 5 January 2009 17

GROFF_MM(7) GROFF_MM(7)

L Page length, only for command line settings.

Letwam
Maximum lines in return-address, used in .WA/.WE. Default is 14.

Lf, Lt, Lx, Le
Enable (1) or disable (0) the printing of List of figures, List of tables, List of exhibits and List
of equations, respectively. Default values are Lf=1, Lt=1, Lx=1, and Le=0.

Li List indentation, used by .AL. Default is 6.

Limsp A flag controlling the insertion of space between prefix and mark in automatic lists (.AL).

0 no space
1 emit space

Ls List space threshold. If current list level is greater than Ls no spacing occurs around lists.
Default is 99.

Lsp The vertical space used by an empty line. The default is 0.5v in troff mode and 1v in nroff
mode.

N Page numbering style.

Default is 0. See also the number registers Sectf and Sectp.

Np A flag to control whether paragraphs are numbered.

0 not numbered
1 numbered in first-level headings.

Default is 0.

O Page offset, only for command line settings.

Of Format of figure, table, exhibit, and equation titles.

0 ". "
1 " - "

Default is 0.

P Current page-number, normally the same as ‘’ unless ‘section-page’ numbering style is
enabled.

Pi Paragraph indentation. Default is 5.

Pgps A flag to control whether header and footer point size should follow the current settings or just
change when the header and footer are defined.

Ps Paragraph spacing. Default is 1.

Pt Paragraph type.

Default is 0.

Sectf A flag controlling ‘section-figures’ numbering style. A non-zero value enables this. See also
register N.

Sectp A flag controlling ‘section-page’ numbering style. A non-zero value enables this. See also
register N.

Si Display indentation. Default is 5.

Verbin Indentation for .VERBON. Default is 5n.

W Line length, only for command line settings.

.mgm Always 1.

INTERNALS
The letter macros are using different submacros depending on the letter type. The name of the sub-
macro has the letter type as suffix. It is therefore possible to define other letter types, either in the
national macro-file, or as local additions. .LT sets the number variables Pt and Pi to 0 and 5, respec-
tively. The following strings and macros must be defined for a new letter type.

Groff Version 1.20 5 January 2009 18

GROFF_MM(7) GROFF_MM(7)

let@init_type

This macro is called directly by .LT. It is supposed to initialize variables and other stuff.

let@head_type

This macro prints the letter head, and is called instead of the normal page header. It is sup-
posed to remove the alias let@header, otherwise it is called for all pages.

let@sg_type name title n flag [arg1 [arg2 [. . .]]]
.SG is calling this macro only for letters; memorandums have its own processing. name and
title are specified through .WA/.WB. n is the counter, 1-max, and flag is true for the last
name. Any other argument to .SG is appended.

let@fc_type closing

This macro is called by .FC, and has the formal closing as the argument.

.LO is implemented as a general option-macro. It demands that a string named Lettype is defined,
where type is the letter type. .LO then assigns the argument to the string variable let∗lo-type.

AUTHOR
Jörgen Hägg, Lund, Sweden <jh@axis.se>.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/m.tmac

c:/progra 1/groff/share/groff/1.20/tmac/mm/∗.cov

c:/progra 1/groff/share/groff/1.20/tmac/mm/∗.MT

c:/progra 1/groff/share/groff/1.20/tmac/mm/locale

SEE ALSO
groff(1), troff(1), tbl(1), pic(1), eqn(1)
groff_mmse(7)

Groff Version 1.20 5 January 2009 19

GROFF_MMSE(7) GROFF_MMSE(7)

GROFF_MMSE

NAMN
groff_mmse − svenska mm makro för groff

SYNTAX
groff −mmse [flaggor. . .] [filer. . .]

BESKRIVNING
mmse är en svensk variant av mm. Alla texter är översatta. En A4 sida får text som är 13 cm bred,
3.5 cm indragning samt är 28.5 cm hög. Det finns stöd för brevuppställning enligt svensk standard för
vänster och högerjusterad text.

COVER kan använda se_ms som argument. Detta ger ett svenskt försättsblad. Se groff_mm(7) för
övriga detaljer.

BREV
Tillgängliga brevtyper:

.LT SVV
Vänsterställd löptext med adressat i position T0 (vänsterställt).

.LT SVH
Högerställd löptext med adressat i position T4 (passar fönsterkuvert).

Följande extra LO-variabler används.

.LO DNAMN namn

Anger dokumentets namn.

.LO MDAT datum

Mottagarens datum, anges under Ert datum: (LetMDAT).

.LO BIL sträng

Anger bilaga, nummer eller sträng med Bilaga (LetBIL) som prefix.

.LO KOMP text

Anger kompletteringsuppgift.

.LO DBET beteckning

Anger dokumentbeteckning eller dokumentnummer.

.LO BET beteckning

Anger beteckning (ärendebeteckning i form av diarienummer eller liknande).

.LO SIDOR antal

Anger totala antalet sidor och skrivs ut efter sidnumret inom parenteser.

Om makrot .TP är definierat anropas det efter utskrift av brevhuvudet. Där lägger man lämpligen in
postadress och annat som brevfot.

SKRIVET AV
Jörgen Hägg, Lund, Sweden <Jorgen.Hagg@axis.se>

FILER
c:/progra 1/groff/share/groff/1.20/tmac/mse.tmac

c:/progra 1/groff/share/groff/1.20/tmac/mm/se_∗.cov

SE OCKSÅ
groff(1), troff(1), tbl(1), pic(1), eqn(1)
groff_mm(7)

Groff Version 1.20 5 January 2009 1

GROFF_MOM(7) GROFF_MOM(7)

GROFF_MOM

NAME
groff_mom − groff ‘mom’ macros

SYNOPSIS
groff −mom [files. . .]
groff −m mom [files. . .]

DESCRIPTION
mom (“my own macros”, “my other macros”, “maximum overdrive macros”, . . .) is a macro set for
groff, designed primarily to format documents for PostScript output.

mom provides two categories of macros: macros for typesetting and macros for document processing.
The typesetting macros provide access to groff’s typesetting power in ways that are simpler to master
and to use than groff’s primitives. The document processing macros provide customizable markup
“tags” that allow the user to design and output professional-looking documents with a minimum of
typesetting intervention.

mom comes with her own (very) complete documentation in HTML format.

FILES
om.tmac

– the main macro file
mom.tmac

– a wrapper file that calls om.tmac directly.

c:/progra 1/groff/share/doc/groff/1.20/html/momdoc/toc.html
– entry point to the HTML documentation

c:/progra 1/groff/share/doc/groff/1.20/examples/∗.mom
– example files using mom

AUTHOR
mom was written by Peter Schaffter Please send bug reports to the groff bug mailing list or directly to
the author at the address, above.

Groff Version 1.20 5 January 2009 1

GROFF_MS(7) GROFF_MS(7)

GROFF_MS

NAME
groff_ms − groff ms macros

SYNOPSIS
groff −ms [options. . .] [files. . .]
groff −m ms [options. . .] [files. . .]

DESCRIPTION
This manual page describes the GNU version of the ms macros, part of the groff typesetting system.
The ms macros are mostly compatible with the documented behavior of the 4.3 BSD Unix ms macros
(see Differences from troff ms below for details). The ms macros are suitable for reports, letters, books,
and technical documentation.

USAGE
The ms macro package expects files to have a certain amount of structure. The simplest documents can
begin with a paragraph macro and consist of text separated by paragraph macros or even blank lines.
Longer documents have a structure as follows:

Document type
If you use the RP (report) macro at the beginning of the document, groff prints the cover page
information on its own page; otherwise it prints the information on the first page with your
document text immediately following. Other document formats found in AT.T troff are spe-
cific to AT.T or Berkeley, and are not supported in groff ms.

Format and layout
By setting number registers, you can change your document’s type (font and size), margins,
spacing, headers and footers, and footnotes. See Document control registers below for more
details.

Cover page
A cover page consists of a title, and optionally the author’s name and institution, an abstract,
and the date. See Cover page macros below for more details.

Body Following the cover page is your document. It consists of paragraphs, headings, and lists.

Table of contents
Longer documents usually include a table of contents, which you can add by placing the TC
macro at the end of your document.

Document control registers
The following table lists the document control number registers. For the sake of consistency, set regis-
ters related to margins at the beginning of your document, or just after the RP macro.

Margin settings
Reg. Definition Effective Default
PO Page offset (left margin) next page 1i
LL Line length next paragraph 6i
LT Header/footer length next paragraph 6i
HM Top (header) margin next page 1i
FM Bottom (footer) margin next page 1i

Text settings

Groff Version 1.20 5 January 2009 1

GROFF_MS(7) GROFF_MS(7)

Reg. Definition Effective Default
PS next paragraph 10pPoint size
VS next paragraph 12pLine spacing (leading)
PSINCR next heading 1pPoint size increment

for section headings
of increasing impor-
tance

GROWPS next heading 0Heading level beyond
which PSINCR is
ignored

Paragraph settings
Reg. Definition Effective Default

PI next paragraph 5nInitial indent
PD next paragraph 0.3vSpace between para-

graphs
QI next paragraph 5nQuoted paragraph

indent
PORPHANS next paragraph 1Number of initial

lines to be kept
together

HORPHANS next heading 1Number of initial
lines to be kept with
heading

Footnote settings
Reg. Definition Effective Default
FL Footnote length next footnote \n[LL]∗5/6
FI Footnote indent next footnote 2n
FF Footnote format next footnote 0
FPS Point size next footnote \n[PS]-2
FVS Vert. spacing next footnote \n[FPS]+2
FPD Para. spacing next footnote \n[PD]/2

Other settings
Reg. Definition Effective Default
MINGW Minimum width between columns next page 2n

Cover page macros
Use the following macros to create a cover page for your document in the order shown.

.RP [no]
Specifies the report format for your document. The report format creates a separate cover
page. With no RP macro, groff prints a subset of the cover page on page 1 of your document.

If you use the optional no argument, groff prints a title page but does not repeat any of the title
page information (title, author, abstract, etc.) on page 1 of the document.

.P1 (P-one) Prints the header on page 1. The default is to suppress the header.

.DA [xxx]
(optional) Print the current date, or the arguments to the macro if any, on the title page (if
specified) and in the footers. This is the default for nroff .

.ND [xxx]
(optional) Print the current date, or the arguments to the macro if any, on the title page (if
specified) but not in the footers. This is the default for troff .

.TL Specifies the document title. Groff collects text following the TL macro into the title, until
reaching the author name or abstract.

.AU Specifies the author’s name. You can specify multiple authors by using an AU macro for each
author.

Groff Version 1.20 5 January 2009 2

GROFF_MS(7) GROFF_MS(7)

.AI Specifies the author’s institution. You can specify multiple institutions.

.AB [no]
Begins the abstract. The default is to print the word ABSTRACT, centered and in italics,
above the text of the abstract. The option no suppresses this heading.

.AE End the abstract.

Paragraphs
Use the PP macro to create indented paragraphs, and the LP macro to create paragraphs with no initial
indent.

The QP macro indents all text at both left and right margins. The effect is identical to the HTML
<BLOCKQUOTE> element. The next paragraph or heading returns margins to normal.

The XP macro produces an exdented paragraph. The first line of the paragraph begins at the left mar-
gin, and subsequent lines are indented (the opposite of PP).

For each of the above paragraph types, and also for any list entry introduced by the IP macro
(described later), the document control register PORPHANS, sets the minimum number of lines which
must be printed, after the start of the paragraph, and before any page break occurs. If there is insuffi-
cient space remaining on the current page to accommodate this number of lines, then a page break is
forced before the first line of the paragraph is printed.

Similarly, when a section heading (see subsection Headings below) preceeds any of these paragraph
types, the HORPHANS document control register specifies the minimum number of lines of the para-
graph which must be kept on the same page as the heading. If insufficient space remains on the current
page to accommodate the heading and this number of lines of paragraph text, then a page break is
forced before the heading is printed.

Headings
Use headings to create a hierarchical structure for your document. By default, the ms macros print
headings in bold using the same font family and point size as the body text. For output devices which
support scalable fonts, this behaviour may be modified, by defining the document control registers,
GROWPS and PSINCR.

The following heading macros are available:

.NH xx Numbered heading. The argument xx is either a numeric argument to indicate the level of the
heading, or S xx xx ". . ." to set the section number explicitly. If you specify heading levels out
of sequence, such as invoking .NH 3 after .NH 1, groff prints a warning on standard error.

If the GROWPS register is set to a value greater than the level of the heading, then the point
size of the heading will be increased by PSINCR units over the text size specified by the PS
register, for each level by which the heading level is less than the value of GROWPS. For
example, the sequence:

.nr PS 10

.nr GROWPS 3

.nr PSINCR 1.5p

.

.NH 1
Top Lev el Heading
.
.NH 2
Second Level Heading
.
.NH 3
Third Level Heading

will cause “1. Top Level Heading” to be printed in 13pt bold text, followed by “1.1. Sec-

ond Level Heading” in 11.5pt bold text, while “1.1.1. Third Level Heading”, and all more
deeply nested heading levels, will remain in the 10pt bold text which is specified by the PS
register.

Note that the value stored in PSINCR is interpreted in groff basic units; the p scaling factor
should be employed, when assigning a value specified in points.

Groff Version 1.20 5 January 2009 3

GROFF_MS(7) GROFF_MS(7)

The style used to represent the section number, within a numbered heading, is controlled by
the SN-STYLE string; this may be set to either the SN-DOT or the SN-NO-DOT style,
(described below), by aliasing SN-STYLE accordingly. By default, SN-STYLE is initialised
by defining the alias

.als SN-STYLE SN-DOT

it may be changed to the SN-NO-DOT style, if preferred, by defining the alternative alias

.als SN-STYLE SN-NO-DOT

Any such change becomes effective with the first use of .NH, after the new alias is defined.

After invoking .NH, the assigned heading number is available in the strings SN-DOT (as it
appears in the default formatting style for numbered headings, with a terminating period fol-
lowing the number), and SN-NO-DOT (with this terminating period omitted). The string SN
is also defined, as an alias for SN-DOT; if preferred, the user may redefine it as an alias for
SN-NO-DOT, by including the initialisation:

.als SN SN-NO-DOT

at any time; the change becomes effective with the next use of .NH, after the new alias is
defined.

.SH [xx]
Unnumbered subheading. The use of the optional xx argument is a GNU extension, which
adjusts the point size of the unnumbered subheading to match that of a numbered heading,
introduced using .NH xx with the same value of xx. For example, given the same settings for
PS, GROWPS and PSINCR, as used in the preceeding .NH example, the sequence:

.SH 2
An Unnumbered Subheading

will print “An Unnumbered Subheading” in 11.5pt bold text.

Highlighting
The ms macros provide a variety of methods to highlight or emphasize text:

.B [txt [post [pre]]]
Sets its first argument in bold type. If you specify a second argument, groff prints it in the
previous font after the bold text, with no intervening space (this allows you to set punctuation
after the highlighted text without highlighting the punctuation). Similarly, it prints the third
argument (if any) in the previous font before the first argument. For example,

.B foo) (

prints (foo).

If you give this macro no arguments, groff prints all text following in bold until the next high-
lighting, paragraph, or heading macro.

.R [txt [post [pre]]]
Sets its first argument in roman (or regular) type. It operates similarly to the B macro other-
wise.

.I [txt [post [pre]]]
Sets its first argument in italic type. It operates similarly to the B macro otherwise.

.CW [txt [post [pre]]]
Sets its first argument in a constant width face. It operates similarly to the B macro otherwise.

.BI [txt [post [pre]]]
Sets its first argument in bold italic type. It operates similarly to the B macro otherwise.

.BX [txt]
Prints its argument and draws a box around it. If you want to box a string that contains spaces,
use a digit-width space (\0).

.UL [txt [post]]
Prints its first argument with an underline. If you specify a second argument, groff prints it in

Groff Version 1.20 5 January 2009 4

GROFF_MS(7) GROFF_MS(7)

the previous font after the underlined text, with no intervening space.

.LG Prints all text following in larger type (2 points larger than the current point size) until the next
font size, highlighting, paragraph, or heading macro. You can specify this macro multiple
times to enlarge the point size as needed.

.SM Prints all text following in smaller type (2 points smaller than the current point size) until the
next type size, highlighting, paragraph, or heading macro. You can specify this macro multi-
ple times to reduce the point size as needed.

.NL Prints all text following in the normal point size (that is, the value of the PS register).

\∗{text\∗}
Print the enclosed text as a superscript.

Indents
You may need to indent sections of text. A typical use for indents is to create nested lists and sublists.

Use the RS and RE macros to start and end a section of indented text, respectively. The PI register
controls the amount of indent.

You can nest indented sections as deeply as needed by using multiple, nested pairs of RS and RE.

Lists
The IP macro handles duties for all lists. Its syntax is as follows:

.IP [marker [width]]

The marker is usually a bullet character \(bu for unordered lists, a number (or auto-increment-
ing number register) for numbered lists, or a word or phrase for indented (glossary-style) lists.

The width specifies the indent for the body of each list item. Once specified, the indent
remains the same for all list items in the document until specified again.

Tab stops
Use the ta request to set tab stops as needed. Use the TA macro to reset tabs to the default (every 5n).
You can redefine the TA macro to create a different set of default tab stops.

Displays and keeps
Use displays to show text-based examples or figures (such as code listings). Displays turn off filling, so
lines of code can be displayed as-is without inserting br requests in between each line. Displays can be
kept on a single page, or allowed to break across pages. The following table shows the display types
available.

Use the DE macro to end any display type. The macros Ds and De were formerly provided as aliases
for DS and DE, respectively, but they hav e been removed, and should no longer be used. X11 docu-
ments which actually use Ds and De always load a specific macro file from the X11 distribution
(macros.t) which provides proper definitions for the two macros.

To keep text together on a page, such as a paragraph that refers to a table (or list, or other item) immedi-
ately following, use the KS and KE macros. The KS macro begins a block of text to be kept on a sin-
gle page, and the KE macro ends the block.

You can specify a floating keep using the KF and KE macros. If the keep cannot fit on the current
page, groff holds the contents of the keep and allows text following the keep (in the source file) to fill in
the remainder of the current page. When the page breaks, whether by an explicit bp request or by
reaching the end of the page, groff prints the floating keep at the top of the new page. This is useful for
printing large graphics or tables that do not need to appear exactly where specified.

The macros B1 and B2 can be used to enclose a text within a box; .B1 begins the box, and .B2 ends it.
Te xt in the box is automatically placed in a diversion (keep).

Tables, figures, equations, and references
The -ms macros support the standard groff preprocessors: tbl, pic, eqn, and refer. Mark text meant for
preprocessors by enclosing it in pairs of tags as follows:

.TS [H] and .TE
Denotes a table, to be processed by the tbl preprocessor. The optional H argument instructs
groff to create a running header with the information up to the TH macro. Groff prints the
header at the beginning of the table; if the table runs onto another page, groff prints the header

Groff Version 1.20 5 January 2009 5

GROFF_MS(7) GROFF_MS(7)

on the next page as well.

.PS and .PE
Denotes a graphic, to be processed by the pic preprocessor. You can create a pic file by hand,
using the AT.T pic manual available on the Web as a reference, or by using a graphics program
such as xfig.

.EQ [align] and .EN
Denotes an equation, to be processed by the eqn preprocessor. The optional align argument
can be C, L, or I to center (the default), left-justify, or indent the equation.

.[and .]
Denotes a reference, to be processed by the refer preprocessor. The GNU refer(1) manual
page provides a comprehensive reference to the preprocessor and the format of the biblio-
graphic database.

Footnotes
The ms macros provide a flexible footnote system. You can specify a numbered footnote by using the
\∗∗ escape, followed by the text of the footnote enclosed by FS and FE macros.

You can specify symbolic footnotes by placing the mark character (such as \(dg for the dagger charac-
ter) in the body text, followed by the text of the footnote enclosed by FS \(dg and FE macros.

You can control how groff prints footnote numbers by changing the value of the FF register as follows:

0 Prints the footnote number as a superscript; indents the footnote (default).

1 Prints the number followed by a period (like 1.) and indents the footnote.

2 Like 1, without an indent.

3 Like 1, but prints the footnote number as a hanging paragraph.

You can use footnotes safely within keeps and displays, but avoid using numbered footnotes within
floating keeps. You can set a second \∗∗ between a \∗∗ and its corresponding .FS; as long as each .FS
occurs after the corresponding \∗∗ and the occurrences of .FS are in the same order as the correspond-
ing occurrences of \∗∗.

Headers and footers
There are three ways to define headers and footers:

• Use the strings LH, CH, and RH to set the left, center, and right headers; use LF, CF, and RF to
set the left, center, and right footers. This works best for documents that do not distinguish between
odd and even pages.

• Use the OH and EH macros to define headers for the odd and even pages; and OF and EF macros
to define footers for the odd and even pages. This is more flexible than defining the individual
strings. The syntax for these macros is as follows:

.OH ’left’center’right’

You can replace the quote (’) marks with any character not appearing in the header or footer text.

You can also redefine the PT and BT macros to change the behavior of the header and footer, respec-
tively. The header process also calls the (undefined) HD macro after PT ; you can define this macro if
you need additional processing after printing the header (for example, to draw a line below the header).

Margins
You control margins using a set of number registers. The following table lists the register names and
defaults:

Reg. Definition Effective Default

Groff Version 1.20 5 January 2009 6

GROFF_MS(7) GROFF_MS(7)

PO Page offset (left margin) next page 1i
LL Line length next paragraph 6i
LT Header/footer length next paragraph 6i
HM Top (header) margin next page 1i
FM Bottom (footer) margin next page 1i

Note that there is no right margin setting. The combination of page offset and line length provide the
information necessary to derive the right margin.

Multiple columns
The ms macros can set text in as many columns as will reasonably fit on the page. The following
macros are available. All of them force a page break if a multi-column mode is already set. However,
if the current mode is single-column, starting a multi-column mode does not force a page break.

.1C Single-column mode.

.2C Tw o-column mode.

.MC [width [gutter]]
Multi-column mode. If you specify no arguments, it is equivalent to the 2C macro. Other-
wise, width is the width of each column and gutter is the space between columns. The
MINGW number register is the default gutter width.

Creating a table of contents
Wrap text that you want to appear in the table of contents in XS and XE macros. Use the TC macro to
print the table of contents at the end of the document, resetting the page number to i (Roman
numeral 1).

You can manually create a table of contents by specifying a page number as the first argument to XS.
Add subsequent entries using the XA macro. For example:

.XS 1
Introduction
.XA 2
A Brief History of the Universe
.XA 729
Details of Galactic Formation
. . .
.XE

Use the PX macro to print a manually-generated table of contents without resetting the page number.

If you give the argument no to either PX or TC, groff suppresses printing the title specified by the
\∗[TOC] string.

Fractional point sizes
Traditionally, the ms macros only support integer values for the document’s font size and vertical spac-
ing. To overcome this restriction, values larger than or equal to 1000 are taken as fractional values,
multiplied by 1000. For example, ‘.nr PS 10250’ sets the font size to 10.25 points.

The following four registers accept fractional point sizes: PS, VS, FPS, and FVS.

Due to backwards compatibility, the value of VS must be smaller than 40000 (this is 40.0 points).

DIFFERENCES FROM troff ms
The groff ms macros are a complete re-implementation, using no original AT.T code. Since they take
advantage of the extended features in groff , they cannot be used with AT.T troff . Other differences
include:

• The internals of groff ms differ from the internals of Unix ms. Documents that depend upon imple-
mentation details of Unix ms may not format properly with groff ms.

• The error-handling policy of groff ms is to detect and report errors, rather than silently to ignore
them.

• Some Bell Labs localisms are not implemented by default. However, if you call the otherwise
undocumented SC section-header macro, you will enable implementations of three other archaic
Bell Labs macros: UC, P1, and P2. These are not enabled by default because (a) they were not
documented, in the original ms manual, and (b) the P1 and UC macros both collide with different

Groff Version 1.20 5 January 2009 7

GROFF_MS(7) GROFF_MS(7)

macros in the Berkeley version of ms.

These emulations are sufficient to give back the 1976 Kernighan . Cherry paper Typsetting Mathe-

matics – User’s Guide its section headings, and restore some text that had gone missing as argu-
ments of undefined macros. No warranty express or implied is given as to how well the typo-
graphic details these produce match the original Bell Labs macros.

• Berkeley localisms, in particular the TM and CT macros, are not implemented.

• Groff ms does not work in compatibility mode (e.g., with the −C option).

• There is no support for typewriter-like devices.

• Groff ms does not provide cut marks.

• Multiple line spacing is not supported (use a larger vertical spacing instead).

• Some Unix ms documentation says that the CW and GW number registers can be used to control
the column width and gutter width, respectively. These number registers are not used in groff ms.

• Macros that cause a reset (paragraphs, headings, etc.) may change the indent. Macros that change
the indent do not increment or decrement the indent, but rather set it absolutely. This can cause
problems for documents that define additional macros of their own. The solution is to use not the
in request but instead the RS and RE macros.

• The number register GS is set to 1 by the groff ms macros, but is not used by the Unix ms macros.
Documents that need to determine whether they are being formatted with Unix ms or groff ms

should use this number register.

• To make groff ms use the default page offset (which also specifies the left margin), the PO number
register must stay undefined until the first ms macro is evaluated. This implies that PO should not
be used early in the document, unless it is changed also: Remember that accessing an undefined
register automatically defines it.

Strings
You can redefine the following strings to adapt the groff ms macros to languages other than English:

String Default Value
REFERENCES References
ABSTRACT ABSTRACT
TOC Table of Contents
MONTH1 January
MONTH2 February
MONTH3 March
MONTH4 April
MONTH5 May
MONTH6 June
MONTH7 July
MONTH8 August
MONTH9 September
MONTH10 October
MONTH11 November
MONTH12 December

The \∗- string produces an em dash — like this.

Use \∗Q and \∗U to get a left and right typographer’s quote, respectively, in troff (and plain quotes in
nroff).

Text Settings
The FAM string sets the default font family. If this string is undefined at initialization, it is set to
Times.

The point size, vertical spacing, and inter-paragraph spacing for footnotes are controlled by the number
registers FPS, FVS, and FPD; at initialization these are set to \n(PS-2, \n[FPS]+2, and \n(PD/2,
respectively. If any of these registers are defined before initialization, the initialization macro does not
change them.

The hyphenation flags (as set by the hy request) are set from the HY register; the default is 14.

Groff Version 1.20 5 January 2009 8

GROFF_MS(7) GROFF_MS(7)

Improved accent marks (as originally defined in Berkeley’s ms version) are available by specifying the
AM macro at the beginning of your document. You can place an accent over most characters by speci-
fying the string defining the accent directly after the character. For example, n\∗ produces an n with a
tilde over it.

NAMING CONVENTIONS
The following conventions are used for names of macros, strings and number registers. External names
available to documents that use the groff ms macros contain only uppercase letters and digits.

Internally the macros are divided into modules; naming conventions are as follows:

• Names used only within one module are of the form module∗name.

• Names used outside the module in which they are defined are of the form module@name.

• Names associated with a particular environment are of the form environment:name; these are used
only within the par module.

• name does not have a module prefix.

• Constructed names used to implement arrays are of the form array!index.

Thus the groff ms macros reserve the following names:

• Names containing the characters ∗, @, and :.

• Names containing only uppercase letters and digits.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/ms.tmac (a wrapper file for s.tmac)
c:/progra 1/groff/share/groff/1.20/tmac/s.tmac

SEE ALSO
groff(1), troff(1), tbl(1), pic(1), eqn(1), refer(1), Groff: The GNU Implementation of troff by Trent
Fisher and Werner Lemberg.

AUTHOR
Original manual page by James Clark et al; rewritten by Larry Kollar (lkollar@despammed.com).

Groff Version 1.20 5 January 2009 9

GROFF_TRACE(7) GROFF_TRACE(7)

GROFF_TRACE

NAME
groff_trace − groff macro package trace.tmac

SYNOPSIS
[options . . .] [files . . .]

DESCRIPTION
The trace macro package of groff(1) can be a valuable tool for debugging documents written in the roff
formatting language. A call stack trace is protocolled on standard error, this is, a diagnostic message is
emitted on entering and exiting of a macro call. This greatly eases to track down an error in some
macro.

This tracing process is activated by specifying the groff or troff command line option −m trace. This
works also with the groffer(1) viewer program. A finer control can be obtained by including the macro
file within the document by the groff macro call .mso trace.tmac. Only macros that are defined after
this line are traced.

If command line option −r trace-full=1 is given (or if this register is set in the document), number and
string register assignments together with some other requests are traced also.

If some other macro package should be traced as well it must be specified after −m trace on the com-
mand line.

The macro file trace.tmac is unusual because it does not contain any macros to be called by a user.
Instead, the existing macro definition and appending facilities are modified such that they display diag-
nostic messages.

EXAMPLES
In the following examples, a roff fragment is fed into groff via standard input. As we are only inter-
ested in the diagnostic messages (standard error) on the terminal, the normal formatted output (standard
output) is redirected to the nirvana device /dev/null. The resulting diagnostic messages are displayed
directly below the corresponding example.

Command line option
Example:

sh# echo ’. > .de test_macro > .. > .test_macro > .test_macro some dummy arguments > ’ |
groff -m trace >/dev/null ∗∗∗ .de test_macro ∗∗∗ de trace enter: .test_macro ∗∗∗ trace exit:
.test_macro ∗∗∗ de trace enter: .test_macro "some" "dummy" "arguments" ∗∗∗ trace exit:
.test_macro "some" "dummy" "arguments"

The entry and the exit of each macro call is displayed on the terminal (standard output) — together
with the arguments (if any).

Nested macro calls
Example:

sh# echo ’. > .de child > .. > .de parent > .child > .. > .parent > ’ | groff -m trace >/dev/null
∗∗∗ .de child ∗∗∗ .de parent ∗∗∗ de trace enter: .parent
∗∗∗ de trace enter: .child
∗∗∗ trace exit: .child ∗∗∗ trace exit: .parent

This shows that macro calls can be nested. This powerful feature can help to tack down quite complex
call stacks.

Activating with .mso
Example:

sh# echo ’. > .de before > .. > .mso trace.tmac > .de after > .. > .before > .after > .before > ’
| groff >/dev/null ∗∗∗ de trace enter: .after ∗∗∗ trace exit: .after

Here, the tracing is activated within the document, not by a command line option. As tracing was not
active when macro before was defined, no call of this macro is protocolled; on the other hand, the
macro after is fully protocolled.

PROBLEMS
Because trace.tmac wraps the .de request (and its cousins), macro arguments are expanded one level

Groff Version 1.20 5 January 2009 1

GROFF_TRACE(7) GROFF_TRACE(7)

more. This causes problems if an argument contains four backslashes or more to prevent too early
expansion of the backslash. For example, this macro call

.foo \\\\n[bar]

normally passes ‘\\n[bar]’ to macro ‘.foo’, but with the redefined .de request it passes ‘\n[bar]’ instead.

The solution to this problem is to use groff’s \E escape which is an escape character not interpreted in
copy mode, for example

.foo \En[bar]

FILES
The trace macros are kept in the file trace.tmac located in the tmac directory; see groff_tmac(5) for
details.

ENVIRONMENT
$GROFF_TMAC_PATH

A colon-separated list of additional tmac directories in which to search for macro files; see
groff_tmac(5) for details.

AUTHOR
Copyright (C) 2002, 2006, 2007, 2008 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License) version
1.1 or later. You should have received a copy of the FDL on your system, it is also available on-line at
the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by Bernd Warken.

SEE ALSO
groff(1)

An overview of the groff system.

troff(1) For details on option −m.

groffer(1)
A viewer program for all kinds of roff documents.

groff_tmac(5)
A general description of groff macro packages.

groff(7)
A short reference for the groff formatting language.

A complete reference for all parts of the groff system is found in the groff info(1) file.

Groff Version 1.20 5 January 2009 2

GROFF_WWW(7) GROFF_WWW(7)

GROFF_WWW

NAME
groff_www − groff macros for authoring web pages

SYNOPSIS
groff −mwww [options] file ...

DESCRIPTION
This manual page describes the GNU −mwww macro package, which is part of the groff document for-
matting system. The manual page is very a basic guide, and the html device driver (grohtml) has been
completely rewritten but still remains as in an alpha state. It has been included into the distribution so
that a lot of people have a chance to test it. Note that this macro file is automatically called (via the
troffrc file) if you use −Thtml or −Txhtml.

To see the hyperlinks in action, please format this man page with the grohtml device.

Here is a summary of the functions found in this macro set.
.JOBNAME split output into multiple files
.HX automatic heading level cut off
.BCL specify colours on a web page
.BGIMG specify background image
.URL create a url using two parameters
.FTP create an ftp reference
.MTO create a html email address
.FTP create an ftp reference
.TAG generate an html name
.IMG include an image file
.PIMG include png image
.MPIMG place png on the margin and wrap text around it
.HnS begin heading
.HnE end heading
.LK emit automatically collected links.
.HR produce a horizontal rule
.NHR suppress automatic generation of rules.
.HTL only generate HTML title
.HEAD add data to <head> block
.ULS unorder list begin
.ULE unorder list end
.OLS ordered list begin
.OLE ordered list end
.DLS definition list begin
.DLE definition list end
.LI insert a list item
.DC generate a drop capital
.HTML pass an html raw request to the device driver
.CDS code example begin
.CDE code example end
.ALN place links on left of main text.
.LNS start a new two-column table with links in the left.
.LNE end the two-column table.
.LINKSTYLE initialize default url attributes.

Output of the pic, eqn, refer, and tbl preprocessors is acceptable as input.

REQUESTS
.JOBNAME filename

Split output into multiple HTML files. A file is split whenever a .SH or .NH 1 is encountered.
Its argument is the file stem name for future output files. This option is equivalent to gro-
html’s −j option.

.HX n Specify the cut off depth when generating links from section headings. For example, a param-
eter of 2 would cause grohtml to generate a list of links for .NH 1 and .NH 2 but not for

Groff Version 1.20 5 January 2009 1

GROFF_WWW(7) GROFF_WWW(7)

.NH 3. Whereas

.HX 0

tells grohtml that no heading links should be created at all. Another method for turning auto-
matic headings off is by issuing the the command line switch −P−l to groff.

.BCL foreground background active not-visited visited
This macro takes five parameters: foreground, background, active hypertext link, hypertext
link not yet visited, and visited hypertext link colour.

.BGIMG imagefile
the only parameter to this macro is the background image file.

.URL url [description] [after]
generates a URL using either one, two or three arguments. The first parameter is the actual
URL, the second is the name of the link, and the third is optional stuff to be printed immedi-
ately afterwards. If description and after are absent then the url becomes the anchor text.
Hyphenation is disabled while printing the actual URL; explicit breakpoints should be inserted
with the \: escape. Here is how to encode foo 〈http://foo.org/〉:

.URL http://\:foo.\:org/ foo :

If this is processed by a device other than −Thtml or −Txhtml it appears as:

foo 〈http://foo.org〉:

The URL macro can be of any type; for example we can reference Eric Raymond’s pic guide
〈pic.html〉 by:

.URL pic.html "Eric Raymond’s pic guide"

.MTO address [description] [after]
Generate an email html reference. The first argument is mandatory as the email address. The
optional second argument is the text you see in your browser If an empty argument is given,
address is used instead. An optional third argument is stuff printed immediately afterwards.
Hyphenation is disabled while printing the actual email address. For example, Joe User
〈joe@user.org〉 was achieved by the following macro:

.MTO joe@user.org "Joe User"

Note that all the URLs actually are treated as consuming no textual space in groff. This could
be considered as a bug since it causes some problems. To circumvent this, www.tmac inserts
a zero-width character which expands to a harmless space (only if run with −Thtml or
−Txhtml).

.FTP url [description] [after]
indicates that data can be obtained via ftp. The first argument is the url and the second is the
browser text. A third argument, similar to the macros above, is intended for stuff printed
immediately afterwards. The second and the third parameter are optional. Hyphenation is dis-
abled while printing the actual URL. As an example, here the location of the GNU ftp server
〈ftp://ftp.gnu.org/〉. The macro example above was specified by:

.FTP ftp://\:ftp.gnu.org/ "GNU ftp server" .

.TAG name
Generates an html name tag from its argument. This can then be referenced using the URL
〈#URL〉 macro. As you can see, you must precede the tag name with # since it is a local refer-
ence. This link was achieved via placing a TAG in the URL description above; the source
looks like this:

.TP

.B URL
generates
.TAG URL
a URL using either two or three arguments.
. . .

Groff Version 1.20 5 January 2009 2

GROFF_WWW(7) GROFF_WWW(7)

.IMG [-R|-L|-C] filename [width] [height]
Include a picture into the document. The first argument is the horizontal location: right, left,
or center (−R, −L, or −C). Alignment is centered by default (-C). The second argument is the
filename. The optional third and fourth arguments are the width and height. If the width is
absent it defaults to 1 inch. If the height is absent it defaults to the width. This maps onto an
html img tag. If you are including a png image then it is advisable to use the PIMG macro.

.PIMG [-R|-L|-C] filename [width [height]]
Include an image in PNG format. This macro takes exactly the same parameters as the IMG
macro; it has the advantage of working with postscript and html devices also since it can auto-
matically convert the image into the EPS format, using the following programs of the netpbm
package: pngtopnm, pnmcrop, and pnmtops. If the document isn’t processed with −Thtml
or −Txhtml it is necessary to use the −U option of groff.

.MPIMG [-R|-L] [-G gap] filename [width [height]]
Place a PNG image on the margin and wrap text around it. The first parameters are optional.
The alignment: left or right (−L or −R) specifies the margin where the picture is placed at.
The default alignment is left (-L). Optionally, −G gap can be used to arrange a gap between
the picture and the text that wraps around it. The default gap width is zero.
The first non-optional argument is the filename. The optional following arguments are the
width and height. If the width is absent it defaults to 1 inch. If the height is absent it defaults
to the width. Example:

.MPIMG -L -G 2c foo.png 3c 1.5c

The height and width may also be given as percentages. The PostScript device calculates the
width from the .l register and the height from the .p register. For example:

.MPIMG -L -G 2c foo.png 15

.HnS n Begin heading. The numeric heading level n is specified by the first parameter. Use this
macro if your headings contain URL, FTP or MTO macros. Example:

.HnS 1

.HR
GNU Troff
.URL http://groff.ffii.org (Groff)
— a
.URL http://www.gnu.org/ GNU
project.
Hosted by
.URL http://ffii.org/ FFII .
.HR
.HnE

In this case you might wish to disable automatic links to headings. This can be done via −P−l
from the command line.

.HnE End heading.

.LK Force grohtml to place the automatically generated links at this position. If this manual page
has been processed with −Thtml or −Txhtml those links can be seen right here.

.HR Generate a full-width horizontal rule for −Thtml and −Txhtml. No effect for all other
devices.

.NHR Suppress generation of the top and bottom rules which grohtml emits by default.

.HTL Generate an HTML title only. This differs from the TL macro of the ms macro package
which generates both an HTML title and an <H1> heading. Use it to provide an HTML title
as search engine fodder but a graphic title in the document. The macro terminates when a
space or break is seen (.sp, .br).

.HEAD
Add arbitrary HTML data to the <head> block. Ignored if not processed with −Thtml or
−Txhtml. Example:

Groff Version 1.20 5 January 2009 3

GROFF_WWW(7) GROFF_WWW(7)

.HEAD "<link \
rel=""icon"" \
type=""image/png"" \
href=""http://foo.org//bar.png""/>"

.HTML
All text after this macro is treated as raw html. If the document is processed without −Thtml
or −Txhtml then the macro is ignored. Internally, this macro is used as a building block for
other higher-level macros.

For example, the BGIMG macro is defined as

.de BGIMG

. HTML <body background=\$1>

..

.DC l text [color]
Produce a drop capital. The first parameter is the letter to be dropped and enlarged, the second
parameter text is the ajoining text whose height the first letter should not exceed. The
optional third parameter is the color of the dropped letter. It defaults to black.

.CDS Start displaying a code section in constant width font.

.CDE End code display

.ALN [color] [percentage]
Place section heading links automatically to the left of the main text. The color argument is
optional and if present indicates which HTML background color is to be used under the links.
The optional percentage indicates the amount of width to devote to displaying the links. The
default values are #eeeeee and 30 for color and percentage width, respectively. This macro
should only be called once at the beginning of the document. After calling this macro each
section heading emits an HTML table consisting of the links in the left and the section text on
the right.

.LNS Start a new two-column table with links in the left column. This can be called if the document
has text before the first .SH and if .ALN is used. Typically this is called just before the first
paragraph and after the main title as it indicates that text after this point should be positioned
to the right of the left-hand navigational links.

.LNE End a two-column table. This should be called at the end of the document if .ALN was used.

.LINKSTYLE color [fontstyle [openglyph closeglyph]]
Initialize default url attributes to be used if this macro set is not used with the HTML device.
The macro set initializes itself with the following call

.LINKSTYLE blue C \[la] \[ra]

but these values will be superseded by a user call to LINKSTYLE.

SECTION HEADING LINKS
By default grohtml generates links to all section headings and places these at the top of the html docu-
ment. (See LINKS 〈#LK〉 for details of how to switch this off or alter the position).

LIMITATIONS OF GROHTML
tbl information is currently rendered as a PNG image.

FILES
c:/progra 1/groff/share/groff/1.20/tmac/www.tmac

SEE ALSO
groff(1), troff(1) grohtml(1), netpbm(1)

AUTHOR
grohtml was written by Gaius Mulley 〈gaius@glam.ac.uk〉

BUGS
Report bugs to the Groff Bug Mailing List 〈bug-groff@gnu.org〉. Include a complete, self-con-
tained example that will allow the bug to be reproduced, and say which version of groff you are using.

Groff Version 1.20 5 January 2009 4

ROFF(7) ROFF(7)

ROFF

NAME
roff − concepts and history of roff typesetting

DESCRIPTION
roff is the general name for a set of text formatting programs, known under names like troff, nroff,
ditroff, groff, etc. A roff system consists of an extensible text formatting language and a set of pro-
grams for printing and converting to other text formats. Unix-like operating systems distribute a roff

system as a core package.

The most common roff system today is the free software implementation GNU roff , groff(1). groff

implements the look-and-feel and functionality of its ancestors, with many extensions.

The ancestry of roff is described in section HISTORY. In this document, the term roff always refers to
the general class of roff programs, not to the roff command provided in early UNIX systems.

In spite of its age, roff is in wide use today, for example, the manual pages on UNIX systems
(man pages), many software books, system documentation, standards, and corporate documents are
written in roff. The roff output for text devices is still unmatched, and its graphical output has the same
quality as other free type-setting programs and is better than some of the commercial systems.

roff is used to format UNIX manual pages, (or man pages), the standard documentation system on
many UNIX-derived operating systems.

This document describes the history of the development of the roff system; some usage aspects com-
mon to all roff versions, details on the roff pipeline, which is usually hidden behind front-ends like
groff(1); a general overview of the formatting language; some tips for editing roff files; and many
pointers to further readings.

HISTORY
Document formatting by computer dates back to the 1960s. The roff system itself is intimately con-
nected to the Unix operating system, but its roots go back to the earlier operating systems CTSS and
Multics.

The Predecessor RUNOFF
roff’s ancestor RUNOFF was written in the MAD language by Jerry Saltzer for the Compatible Time

Sharing System (CTSS), a project of the Massachusetts Institute of Technology (MIT), in 1963 and
1964 – note that CTSS commands were all uppercase.

In 1965, MIT’s Project MAC teamed with Bell Telephone Laboratories (BTL) and General Electric to
begin the Multics system A command called runoff was written for Multics in the late 60s in the BCPL
language, by Bob Morris, Doug McIlroy, and other members of the Multics team.

Like its CTSS ancestor, Multics runoff formatted an input file consisting of text and command lines;
commands began with a period and were two letters. Output from these commands was to terminal
devices such as IBM Selectric terminals. Multics runoff had additional features added, such as the
ability to do two-pass formatting; it became the main format for Multics documentation and text pro-
cessing.

BCPL and runoff were ported to the GCOS system at Bell Labs when BTL left the development of
Multics.

The Classical nroff/troff System
At BTL, there was a need to drive the Graphic Systems CAT typesetter, a graphical output device from
a PDP-11 computer running Unix. As runoff was too limited for this task it was further developed into
a more powerful text formatting system by Joseph F. Ossanna, who already programmed several runoff
ports.

The name runoff was shortened to roff . The greatly enlarged language of Ossanna’s version already
included all elements of a full roff system. All modern roff systems try to implement compatibility to
this system. So Joe Ossanna can be called the father of all roff systems.

This first roff system had three formatter programs.

troff (typesetter roff) generated a graphical output for the CAT typesetter as its only device.

nroff produced text output suitable for terminals and line printers.

Groff Version 1.20 5 January 2009 1

ROFF(7) ROFF(7)

roff was the reimplementation of the former runoff program with its limited features; this program
was abandoned in later versions. Today, the name roff is used to refer to a troff/nroff sytem as
a whole.

Ossanna’s first version was written in the PDP-11 assembly language and released in 1973. Brian

Kernighan joined the roff development by rewriting it in the C programming language. The C version
was released in 1975.

The syntax of the formatting language of the nroff/troff programs was documented in the famous Tr off

User’s Manual [CSTR #54], first published in 1976, with further revisions up to 1992 by Brian
Kernighan. This document is the specification of the classical troff . All later roff systems tried to
establish compatibility with this specification.

After Ossanna’s death in 1977, Kernighan went on with developing troff . In the late 1970s, Kernighan
equipped troff with a general interface to support more devices, the intermediate output format, and the
postprocessor system. This completed the structure of a roff system as it is still in use today; see sec-
tion USING ROFF. In 1979, these novelties were described in the paper [CSTR #97]. This new troff

version is the basis for all existing newer troff systems, including groff . On some systems, this device

independent troff got a binary of its own, called ditroff(7). All modern troff programs already provide
the full ditroff capabilities automatically.

Av ailability
The source code of both the ancient Unix and classical troff weren’t available for two decades. Mean-
while, it is accessible again (on-line) for non-commercial use, cf. section SEE ALSO.

Free roff
The most important free roff project was the GNU implementation of troff , written from scratch by
James Clark and put under the GNU Public License It was called groff (GNU roff). See groff(1) for an
overview.

The groff system is still actively developed. It is compatible to the classical troff , but many extensions
were added. It is the first roff system that is available on almost all operating systems – and it is free.
This makes groff the de-facto roff standard today.

An alternative is Gunnar Ritter’s Heirloom Documentation Tools project, started in 2005, which pro-
vides enhanced versions of the various roff tools found in the OpenSolaris and Plan 9 operating sys-
tems, now available under free licenses.

USING ROFF
Most people won’t even notice that they are actually using roff . When you read a system manual page
(man page) roff is working in the background. roff documents can be viewed with a native viewer
called xditview(1x), a standard program of the X window distribution, see X(7x). But using roff

explicitly isn’t difficult either.

Some roff implementations provide wrapper programs that make it easy to use the roff system on the
shell command line. For example, the GNU roff implementation groff(1) provides command line
options to avoid the long command pipes of classical troff ; a program grog(1) tries to guess from the
document which arguments should be used for a run of groff; people who do not like specifying com-
mand line options should try the groffer(1) program for graphically displaying groff files and man
pages.

The roff Pipe
Each roff system consists of preprocessors, roff formatter programs, and a set of device postprocessors.
This concept makes heavy use of the piping mechanism, that is, a series of programs is called one after
the other, where the output of each program in the queue is taken as the input for the next program.

cat file | . . . | preproc | . . . | troff options | postproc

The preprocessors generate roff code that is fed into a roff formatter (e.g. troff), which in turn generates
intermediate output that is fed into a device postprocessor program for printing or final output.

All of these parts use programming languages of their own; each language is totally unrelated to the
other parts. Moreover, roff macro packages that were tailored for special purposes can be included.

Most roff documents use the macros of some package, intermixed with code for one or more preproces-
sors, spiced with some elements from the plain roff language. The full power of the roff formatting
language is seldom needed by users; only programmers of macro packages need to know about the

Groff Version 1.20 5 January 2009 2

ROFF(7) ROFF(7)

gory details.

Preprocessors
A roff preprocessor is any program that generates output that syntactically obeys the rules of the roff

formatting language. Each preprocessor defines a language of its own that is translated into roff code
when run through the preprocessor program. Parts written in these languages may be included within a
roff document; they are identified by special roff requests or macros. Each document that is enhanced
by preprocessor code must be run through all corresponding preprocessors before it is fed into the
actual roff formatter program, for the formatter just ignores all alien code. The preprocessor programs
extract and transform only the document parts that are determined for them.

There are a lot of free and commercial roff preprocessors. Some of them aren’t available on each sys-
tem, but there is a small set of preprocessors that are considered as an integral part of each roff system.
The classical preprocessors are

tbl for tables.
eqn for mathematical formulæ.
pic for drawing diagrams.
refer for bibliographic references.
soelim for including macro files from standard locations.
chem for drawing chemical formulæ.

Other known preprocessors that are not available on all systems include
grap for constructing graphical elements.
grn for including gremlin(1) pictures.

Formatter Programs
A roff formatter is a program that parses documents written in the roff formatting language or uses
some of the roff macro packages. It generates intermediate output, which is intended to be fed into a
single device postprocessor that must be specified by a command-line option to the formatter program.
The documents must have been run through all necessary preprocessors before.

The output produced by a roff formatter is represented in yet another language, the intermediate output

format or troff output. This language was first specified in [CSTR #97]; its GNU extension is docu-
mented in groff_out(5). The intermediate output language is a kind of assembly language compared to
the high-level roff language. The generated intermediate output is optimized for a special device, but
the language is the same for every device.

The roff formatter is the heart of the roff system. The traditional roff had two formatters, nroff for text
devices and troff for graphical devices.

Often, the name troff is used as a general term to refer to both formatters.

Devices and Postprocessors
Devices are hardware interfaces like printers, text or graphical terminals, etc., or software interfaces
such as a conversion into a different text or graphical format.

A roff postprocessor is a program that transforms troff output into a form suitable for a special device.
The roff postprocessors are like device drivers for the output target.

For each device there is a postprocessor program that fits the device optimally. The postprocessor
parses the generated intermediate output and generates device-specific code that is sent directly to the
device.

The names of the devices and the postprocessor programs are not fixed because they greatly depend on
the software and hardware abilities of the actual computer. For example, the classical devices men-
tioned in [CSTR #54] have greatly changed since the classical times. The old hardware doesn’t exist
any longer and the old graphical conversions were quite imprecise when compared to their modern
counterparts.

For example, the Postscript device post in classical troff had a resolution of 720 units per inch, while
groff ’s ps device has 72000, a refinement of factor 100.

Today the operating systems provide device drivers for most printer-like hardware, so it isn’t necessary
to write a special hardware postprocessor for each printer.

ROFF PROGRAMMING
Documents using roff are normal text files decorated by roff formatting elements. The roff formatting

Groff Version 1.20 5 January 2009 3

ROFF(7) ROFF(7)

language is quite powerful; it is almost a full programming language and provides elements to enlarge
the language. With these, it became possible to develop macro packages that are tailored for special
applications. Such macro packages are much handier than plain roff . So most people will choose a
macro package without worrying about the internals of the roff language.

Macro Packages
Macro packages are collections of macros that are suitable to format a special kind of documents in a
convenient way. This greatly eases the usage of roff . The macro definitions of a package are kept in a
file called name.tmac (classically tmac.name). All tmac files are stored in one or more directories at
standardized positions. Details on the naming of macro packages and their placement is found in
groff_tmac(5).

A macro package that is to be used in a document can be announced to the formatter by the command
line option −m, see troff(1), or it can be specified within a document using the file inclusion requests of
the roff language, see groff(7).

Famous classical macro packages are man for traditional man pages, mdoc for BSD-style manual pages;
the macro sets for books, articles, and letters are me (probably from the first name of its creator Eric

Allman), ms (from Manuscript Macros), and mm (from Memorandum Macros).

The roff Formatting Language
The classical roff formatting language is documented in the Tr off User’s Manual [CSTR #54]. The roff

language is a full programming language providing requests, definition of macros, escape sequences,
string variables, number or size registers, and flow controls.

Requests are the predefined basic formatting commands similar to the commands at the shell prompt.
The user can define request-like elements using predefined roff elements. These are then called
macros. A document writer will not note any difference in usage for requests or macros; both are writ-
ten on a line on their own starting with a dot.

Escape sequences are roff elements starting with a backslash ‘\’. They can be inserted anywhere, also
in the midst of text in a line. They are used to implement various features, including the insertion of
non-ASCII characters with \(, font changes with \f, in-line comments with \", the escaping of special
control characters like \\, and many other features.

Strings are variables that can store a string. A string is stored by the .ds request. The stored string can
be retrieved later by the \∗ escape sequence.

Registers store numbers and sizes. A register can be set with the request .nr and its value can be
retrieved by the escape sequence \n.

FILE NAME EXTENSIONS
Manual pages (man pages) take the section number as a file name extension, e.g., the filename for this
document is roff .7 , i.e., it is kept in section 7 of the man pages.

The classical macro packages take the package name as an extension, e.g. file.me for a document using
the me macro package, file.mm for mm, file.ms for ms, file.pic for pic files, etc.

But there is no general naming scheme for roff documents, though file.tr for troff file is seen now and
then. Maybe there should be a standardization for the filename extensions of roff files.

File name extensions can be very handy in conjunction with the less(1) pager. It provides the possibil-
ity to feed all input into a command-line pipe that is specified in the shell environment variable
LESSOPEN. This process is not well documented, so here an example:

LESSOPEN=’|lesspipe s’

where lesspipe is either a system supplied command or a shell script of your own.

EDITING ROFF
The best program for editing a roff document is Emacs (or Xemacs), see emacs(1). It provides an nroff

mode that is suitable for all kinds of roff dialects. This mode can be activated by the following meth-
ods.

When editing a file within Emacs the mode can be changed by typing ‘M-x nroff-mode’, where M-x
means to hold down the Meta key (or Alt) and hitting the x key at the same time.

But it is also possible to have the mode automatically selected when the file is loaded into the editor.

Groff Version 1.20 5 January 2009 4

ROFF(7) ROFF(7)

• The most general method is to include the following 3 comment lines at the end of the file.

.\" Local Variables: .\" mode: nroff .\" End:

• There is a set of file name extensions, e.g. the man pages that trigger the automatic activation
of the nroff mode.

• Theoretically, it is possible to write the sequence

.\" -∗- nroff -∗-

as the first line of a file to have it started in nroff mode when loaded. Unfortunately, some
applications such as the man program are confused by this; so this is deprecated.

All roff formatters provide automated line breaks and horizontal and vertical spacing. In order to not
disturb this, the following tips can be helpful.

• Nev er include empty or blank lines in a roff document. Instead, use the empty request (a line
consisting of a dot only) or a line comment .\" if a structuring element is needed.

• Nev er start a line with whitespace because this can lead to unexpected behavior. Indented
paragraphs can be constructed in a controlled way by roff requests.

• Start each sentence on a line of its own, for the spacing after a dot is handled differently
depending on whether it terminates an abbreviation or a sentence. To distinguish both cases,
do a line break after each sentence.

• To additionally use the auto-fill mode in Emacs, it is best to insert an empty roff request (a line
consisting of a dot only) after each sentence.

The following example shows how optimal roff editing could look.

This is an example for a .I roff document. . This is the next sentence in the same paragraph. .
This is a longer sentence stretching over sev eral lines; abbreviations like ‘cf.’ are easily identi-
fied because the dot is not followed by a line break. . In the output, this will still go to the
same paragraph.

Besides Emacs, some other editors provide nroff style files too, e.g. vim(1), an extension of the vi(1)
program.

SEE ALSO
There is a lot of documentation on roff . The original papers on classical troff are still available, and all
aspects of groff are documented in great detail.

Internet sites
troff.org

The historical troff site provides an overview and pointers to all historical aspects of roff .

Multics The Multics site contains a lot of information on the MIT projects, CTSS, Multics, early Unix,
including runoff ; especially useful are a glossary and the many links to ancient documents.

Unix Archive
The Ancient Unixes Archive provides the source code and some binaries of the ancient Unixes
(including the source code of troff and its documentation) that were made public by Caldera
since 2001, e.g. of the famous Unix version 7 for PDP-11 at the Unix V7 site

Developers at AT.T Bell Labs
Bell Labs Computing and Mathematical Sciences Research provides a search facility for
tracking information on the early developers.

Plan 9 The Plan 9 operating system by AT.T Bell Labs.

runoff Jerry Saltzer’s home page stores some documents using the ancient RUNOFF formatting lan-
guage.

CSTR Papers
The Bell Labs CSTR site stores the original troff manuals (CSTR #54, #97, #114, #116, #122)
and famous historical documents on programming.

GNU roff

The groff web site provides the free roff implementation groff , the actual standard roff .

Groff Version 1.20 5 January 2009 5

ROFF(7) ROFF(7)

Historical roff Documentation
Many classical troff documents are still available on-line. The two main manuals of the troff language
are

[CSTR #54]
J. F. Ossanna, Nroff/Troff User’s Manual Bell Labs, 1976; revised by Brian Kernighan, 1992.

[CSTR #97]
Brian Kernighan, A Typesetter-independent TROFF Bell Labs, 1981, revised March 1982.

The “little language” roff papers are

[CSTR #114]
Jon L. Bentley and Brian W. Kernighan, GRAP – A Language for Typesetting Graphs Bell
Labs, August 1984.

[CSTR #116]
Brian W. Kernighan, PIC – A Graphics Language for Typesetting Bell Labs, December 1984.

[CSTR #122]
J. L. Bentley, L. W. Jelinski, and B. W. Kernighan, CHEM – A Program for Typesetting Chem-

ical Structure Diagrams, Computers and Chemistry Bell Labs, April 1986.

Manual Pages
Due to its complex structure, a full roff system has many man pages, each describing a single aspect of
roff . Unfortunately, there is no general naming scheme for the documentation among the different roff

implementations.

In groff , the man page groff(1) contains a survey of all documentation available in groff .

On other systems, you are on your own, but troff(1) might be a good starting point.

AUTHORS
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

This document is distributed under the terms of the FDL (GNU Free Documentation License)
version 1.3 or later. You should have received a copy of the FDL on your system, it is also available
on-line at the GNU copyleft site

This document is part of groff , the GNU roff distribution. It was written by Bernd Warken it is main-
tained by Werner Lemberg

Groff Version 1.20 5 January 2009 6

	ADDFTINFO (1)
	AFMTODIT (1)
	CHEM (1)
	DEROFF (1)
	EQN (1)
	EQN2GRAPH (1)
	GDIFFMK (1)
	GRAP (1)
	GRAP2GRAPH (1)
	GRN (1)
	GRODVI (1)
	GROFF (1)
	GROFFER (1)
	GROG (1)
	GROHTML (1)
	GROLBP (1)
	GROLJ4 (1)
	GROPS (1)
	GROTTY (1)
	HPFTODIT (1)
	INDXBIB (1)
	LKBIB (1)
	LOOKBIB (1)
	MMROFF (1)
	NEQN (1)
	NROFF (1)
	PDFROFF (1)
	PFBTOPS (1)
	PIC (1)
	PIC2GRAPH (1)
	PRAG (1)
	PRECONV (1)
	REFER (1)
	roff2dvi (1)
	roff2html (1)
	roff2pdf (1)
	roff2ps (1)
	roff2text (1)
	roff2x (1)
	SOELIM (1)
	TBL (1)
	TFMTODIT (1)
	TR2TEX (1)
	TROFF (1)
	GROFF_FONT (5)
	GROFF_OUT (5)
	GROFF_TMAC (5)
	LJ4_FONT (5)
	DITROFF (7)
	GROFF (7)
	GROFF_CHAR (7)
	GROFF_DIFF (7)
	GROFF_HDTBL (7)
	GROFF_MAN (7)
	GROFF_MDOC (7)
	GROFF_ME (7)
	GROFF_MM (7)
	GROFF_MMSE (7)
	GROFF_MOM (7)
	GROFF_MS (7)
	GROFF_TRACE (7)
	GROFF_WWW (7)
	ROFF (7)

