
JMCAD http://jmcad.sf.net

JMCAD (JMCADRTS, JMCADRTC)

1 Description
2 Application
3 Structure
4 Installing the system
5 Starting and use
5.1 JMCAD
5.2 JMCADRTS
5.3 JMCADRTC
6 Development
6.1 The class structure
6.2 Compilation
6.3 Creating the visual elements
6.4 Creating and localization of documents
6.5 Localizing the user interface

1

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

1 Description
The software package is designed to JMCAD dynamic analysis and design of a

wide variety of systems and devices. In terms of features it is an alternative to similar
software products LabView, Simulink, VisSim, Bauman et al convenient editor of
block diagrams, extensive library of standard blocks and built-in programming
language can implement a model of almost any degree of complexity, while
providing clarity of presentation. The software package JMCAD successfully used to
design control systems, servo drives and robotic manipulators, thermal power plants,
as well as for solutions of nonstationary boundary value problems (heat conduction,
fluid dynamics, etc.).

Widely used in the learning process, allowing to simulate various phenomena
in physics, electrical engineering, in the dynamics of machinery, etc. Can operate in
clusters, including those in remote access to technology and information resources.
For users with ease of use is also due to the localization of JMCAD interface into
different languages and the availability of extensive documentation.
Versions are available JMCAD kernel source, libraries, and is an open system with
full documentation and a set of demos. Also, the complex includes modules for
maximum performance and real-time control (JMCADRTS, JMCADRTC).

The software package designed using JMCAD language Java
(http://java.sun.com) and can be used in various operating systems (Windows, Linux,
Solaris, Unix, etc.).

2 Application
The software package implements JMCAD following modes:

• SIMULATION, which provides:
o modeling of continuous, discrete and hybrid dynamic systems, including

the presence of data exchange with external programs and devices ;
o edit the parameters of the model in the mode of «on-line»;
o calculated in real time, or zooming in modeling time;
o restart and playback of simulation results;
o dynamic signal processing.

• OPTIMIZATION, allows one to solve the problem:
o minimize (maximize) defined quality indicators;
o find the optimal parameters of the designed system in multiobjective

formulation with constraints on the quality and optimized parameters.
• ANALYSIS, which provides:

o calculation and construction characteristics of static and dynamic
systems;

o calculation of transfer functions;
o visualization of the results of analysis of statically and dynamically.

2

http://jmcad.sf.net/
http://java.sun.com/

JMCAD http://jmcad.sf.net

• SYNTHESIS, allowing regulators to design:
o to set the desired frequency response;
o for a given location of the dominant poles.

• MONITORING AND CONTROL, allowing you to create virtual prototiry:
o remote control instrumentation and control devices;
o mimics the multimedia and animation effects.

The advantages of JMCAD include:

• openness by using the Java language and the implementation of several
mechanisms for sharing data with external programs;

• the possibility to use different operating systems (Windows, Linux, Solaris,
Unix, etc.);

• easy to build complex models through the use of nested structures, and
algorithms for signal tracing of typical units, convenient way to set the
parameters and equations;

• efficient numerical methods;
• a large number of tutorials and demos with detailed comments.

3 Structure
 The software package has three separate, independent unit JMCAD,

JMCADRTS, JMCADRTC. Each unit can operate independently, as well as the
creation of distributed systems, you can use them together. Sharing allows you to
create complex distributed systems with the ability to quickly and easily develop the
system. This functional feature allows you to change a running system without
stopping it. Simply create a fork and backup unit, which develop and produce, and
after the test and this block is included in the system as default. Replacing the old
block without stopping the entire system.

JMCAD - the main block to create and edit models (Fig. 1). You might also
consider using it to run the model in operation (Fig. 2). Running the model in the
mode of operation is performed through the command line using the parameter
-single.

JMCADRTS - block to run the model in operation (Fig. 2). Running the model
in the mode of operation is performed through the command line.

JMCADRTC - block for the interface and control model (Fig. 3). Starting the
interface and control model is produced via the command line.

3

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

Fig. 1

Fig. 2

4

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

Fig. 3

4 Installing the system
The software package JMCAD can be installed on any computer both locally

and with ability to work across the network.
To install the system must be installed JMCAD Java

(http://java.sun.com/javase/downloads/). It is recommended to install the version of
Java SE Runtime Environment 7 (JRE) or higher to run the complex, and for the
development using a version of Java SE Development Kit 7 (JDK) or higher.

The software package can be downloaded from JMCAD server
http://jmcad.sf.net. On the server, there are two variants of the distribution:
• JMCAD-XX.XXX-bin.zip - distribution software package ready for work;
• JMCAD-XX.XXX-all.zip - distribution software system for business and
developers, which contains the source code;

To install JMCAD unzip the file to JMCAD-XX.XXX-bin.zip or JMCAD-
XX.XXX-all.zip on your hard drive. When unzipped distribution directory will be
created with the same name as that of the archive file. The directory will contain the
relevant files intended distribution.

5

http://jmcad.sf.net/
http://jmcad.sf.net/
http://java.sun.com/javase/downloads/

JMCAD http://jmcad.sf.net

5 Starting and use
To run the software package used by the script files *. bat (*. sh). Sample

script files to run JMCAD, JMCADRTS, JMCADRTC found in the directory
examples.

5.1 JMCAD
To run the software package JMCAD used by the scripts __JMCAD .*. bat

(__JMCAD. *. sh). Instead of a file is selected * corresponding to the operating
system will be used where the software system.

You might also consider using it to run the model in operation (Fig. 2).
Running the model in the mode of operation is performed through the command line
using the parameter -single. Command line for starting the model in the mode of
operation is as follows:

java [parameters] <CLASSPATH> JMCAD -single <MODEL>

where:
[parameters] — parameters for the virtual machine Java. For large models

with a shortage of RAM is necessary to specify the value -Xmx1000m, which
determines the amount of available memory for the virtual machine Java. You can
also use the -server option to increase the speed of calculation. More details about the
values and their application may check the documentation for the virtual machine,
Java. These parameters are optional and may not be indicated.

<CLASSPATH> - used to connect the libraries to the class. All libraries are
required for the model should be available to the virtual machine Java. There are
several options for specifying the Java virtual machine where to find the class
libraries. Described in detail in the documentation for the virtual machine Java. For
this case the line description must be present libraries are needed to start and run the
model. The main classes of all libraries have a library located in the jar archive
containing class and JMCAD.jar to run JMCAD.

<MODEL> - command line parameter that specifies the model file (*. jmcad)
to run.

5.2 JMCADRTS
Running the model in the mode of operation is performed through the

command line. Command line for starting the model in the mode of operation is as
follows:

6

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

java [parameters] <CLASSPATH> JMCADRTS <MODEL>

where:
[Parameters] - parameters for the virtual machine Java. For large models with

a shortage of RAM is necessary to specify the value -Xmx1000m, which determines
the amount of available memory for the virtual machine Java. You can also use the
-server option to increase the speed of calculation. More details about the values and
their application may check the documentation for the virtual machine, Java. These
parameters are optional and may not be indicated.

<CLASSPATH> - used to connect the libraries to the class. All libraries are
required for the model should be available to the virtual machine Java. There are
several options for specifying the Java virtual machine where to find the class
libraries. Described in detail in the documentation for the virtual machine Java. For
this case the line description must be present libraries are needed to start and run the
model. The main classes of all libraries have a library located in the jar archive
containing class and JMCADRTS.jar to run JMCADRTS.

<MODEL> - command line parameter that specifies the model file (*. jmcad)
to run.

5.3 JMCADRTC
Starting the interface and control model is produced via the command line that

looks like this:

java [parameters] <CLASSPATH> JMCADRTC <MODEL>

where:
[Parameters] - parameters for the virtual machine Java. For large models with

a shortage of RAM is necessary to specify the value -Xmx1000m, which determines
the amount of available memory for the virtual machine Java. You can also use the
-server option to increase the speed of calculation. More details about the values and
their application may check the documentation for the virtual machine, Java. These
parameters are optional and may not be indicated.

<CLASSPATH> - used to connect the libraries to the class. All libraries are
required for the model should be available to the virtual machine Java. There are
several options for specifying the Java virtual machine where to find the class
libraries. Described in detail in the documentation for the virtual machine Java. For
this case the line description must be present libraries are needed to start and run the
model. The main classes of all libraries have a library located in the jar archive
containing class and JMCADRTC.jar to run JMCADRTC.

<MODEL> - command line parameter that specifies the model file (*. jmcad)
to run.

7

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

6 Development
The software package is an open system JMCAD with the possibility of

developing new modules. The system was developed using the language Java
(http://java.sun.com), which allows its use on different operating systems (Windows,
Linux, Solaris, Unix, etc.).

The system is the kernel that controls the system. The kernel is responsible for
starting, stopping work and model. In the software package used three kernels -
JMCAD, JMCADRTS, JMCADRTC. The principle of operation is that the nucleus
controls the data transfer between the elements, and all operations are performed in a
cell autonomous. The kernel synchronizes data transmission between the elements
and operates in three stages (start-up, work, stop) :

• start - engine runs method calc_pre(); for all elements of the model. Method
calc_pre(); is used to prepare the item for work;

• operation - the kernel starts the method calc(); in the loop for all elements of
the model with the specified delay. For items that are a source calls the
start(long t0, long ti, long dt);. If 0 is specified then the system operates in real
time;

• stop - start kernel method calc_post(); for all elements of the model. Method
calc_post(); is used to prepare the item to a halt.

6.1 The class structure
The system is based modular laid. This approach makes it easy to develop new

items. Appointment and functions of the system elements are classified into different
files:

• JMCAD*.java — core systems and graphical user interface;
• JMCAD_Internationalize_xx_XX.properties — localization of the interface.

In place of the symbols xx and XX are indicated symbols defining country and
language;

• JMCAD.menu — menu of visual elements;
• _*.java — visual elements. Also for the convenience of the files that refer to

this visual element have a similar name.

6.2 Compilation
To compile and package all the classes in the jar file using a batch file

__make_jar.bat (__make_jar.sh). These batch files are for each block in a directory
with source files for this unit:

8

http://jmcad.sf.net/
http://java.sun.com/

JMCAD http://jmcad.sf.net

• src – JMCAD (JMCAD.jar);
• src_rts – JMCADRTS (JMCADRTS.jar);
• src_rtc – JMCADRTC (JMCADRTC.jar).

6.3 Creating the visual elements
All models are JMCAD of the visual elements that determine the effectiveness

of this model. In the system there is a large set of predefined standard elements. But
there is always an objective necessity to increase the standard set of standard
elements, adding new elements or modifying existing ones. To do this in software
system JMCAD provides easy way to create new elements.

To create the basic structure of a visual element used inheritance base class for
all visual elements JMCADObject. This class contains variables and methods needed
to create a new visual elements.

The main variables:

• in — the array of input values. By default, the array size is 0. The size of the
array determines the number of entries in the element. Arriving at the input
value stored in cell array corresponding to the index entry;

• out — the array of output values. By default, the array size is 0. The size of the
array determines the number of outputs from an element. Once all the inputs of
the element in the values start method calc(); who performs the action it and
then all the values in the array are passed out to the other elements;

• in_text — array of names of input values. The array size must match the array
of input values in. The names describe the Latin alphabet and numbers. Must
begin with a letter and contain no special characters;

• out_text — array of names of output values. The array size must match the
array of output values out. The names describe the Latin alphabet and
numbers. Must begin with a letter and contain no special characters;

• ToolTipText — text prompt appears when you hover over an item;
• w, h — width and height of the element. The values are given in the

constructor;
• isGeneranor — variable determines the type of standard or source. By default,

the variable is false, that defines the element as a standard method and the
kernel runs the calc();. If you specify a variable to true, the element has a type
of the source and the kernel starts the method start(long t0, long ti, long dt);

• isVisual — variable defines the appearance of the item when it is used in the
interface and control model (Fig. 3). The default value is false, which makes
the element visible in the interface and control model;

• panel_c — central panel element;
• edit_panel — panel to create graphical interfaces that can be used to edit the

properties of the element. Double clicking on the item in edit mode model, a
dialog box containing this panel.

9

http://jmcad.sf.net/

JMCAD http://jmcad.sf.net

The main methods:
• calc_pre() — method used to prepare the item for work;
• calc() — method will be invoked at each step of the model with a specified

delay. For items that are a source calls the start(long t0, long ti, long dt);. If 0
is specified then the system operates in real time;

• calc_post() — method used to prepare the item to a halt;
• start(long t0, long ti, long dt) — a method for items that are the sources and

will be called at each step of the model with a specified delay. If 0 is specified
then the system operates in real time;

• edit_pre() — method used to create graphical user interface for editing the
properties of the element. Graphical interface is provided on the panel
edit_panel, which is then displayed when double clicking an item in the dialog
box;

• edit_post() — if the method is called when the element properties dialog box,
clicked accept the changes;

• paint_info(Graphics g) — method provides access to graphical methods of the
element;

• parse(String pst) — provides a method for reading data from the model. The
method body must begin with the string super.parse(pst);

• write(RandomAccessFile fout) — method ensures that the parameters of the
element in the model. The method body must begin with the string
super.write(fout).

6.4 Creating and localization of documents
 The software package JMCAD contains algorithm automatically display the

documentation for each element and creates a common documentation.
Double clicking on the item in edit mode model, a dialog box containing a

button to pop the documentation for this item.
To display the documentation in the directory should be help file

documentation for this item. The file has the format of the HTML data and should
have the same name as the class of the element. To localize the documentation to the
file name prefix _xx_XX. Where xx specifies the country, and XX specifies the language.

6.5 Localizing the user interface
Localization of the interface produced by standard methods of language Java.

Strings for localization found in the files to localize the user interface
JMCAD_Internationalize_xx_XX.properties. Where to place the symbols xx and
XX indicates the characters defining the country and language. More detailed
information about the localization techniques in Java can be found in documentation
for programming in Java.

10

http://jmcad.sf.net/

	JMCAD (JMCADRTS, JMCADRTC)
	1 Description
	2 Application
	3 Structure
	4 Installing the system
	5 Starting and use
	5.1 JMCAD
	5.2 JMCADRTS
	5.3 JMCADRTC
	6 Development
	6.1 The class structure
	6.2 Compilation
	6.3 Creating the visual elements
	6.4 Creating and localization of documents
	6.5 Localizing the user interface

